Formal Description of Embedded Operating Systems

*
Martin Vojtko
Institute of Computer Engineering and Applied Informatics
Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava
llkoviCova 2, 842 16 Bratislava, Slovakia
martin.vojtko@stuba.sk

Abstract

The fast development of new processors introduces prob-
lems with the adaptation of operating systems. When
a new processor is presented on the market, the operat-
ing system needs to be adapted to the processor architec-
ture and features. It is done by the reprogramming of a
platform-dependent layer and the implementation of miss-
ing device modules of the operating system. The adapta-
tion process of the operating system is more complicated
when the new processor has a completely different archi-
tecture than the one of the operating system for which
it was previously designed for. Another problem of the
adaptation is in the processor datasheets, because they
are not processable by the computer so the generation of
the operating system code from datasheets is not possible.
In this dissertation thesis, we present an updated adapta-
tion process of embedded operating systems. We designed
a Processor Formal Description that acts as a computer
processable datasheet. This description is used for auto-
mated code generation of platform-dependent code. As a
support to the adaptation process we present a concept
of an adaptation framework that helps to reduce time
needed for the adaptation of the operating system.

Categories and Subject Descriptors

C.0 [Computer Systems Organization|: General—
hardware/software interfaces; C.3 [Computer Systems
Organization|: Special-purpose and Application-based
Systems—microprocessor/microcomputer applications,
real-time and embedded systems; D.2.2 [Software En-
gineering]: Design Tools and Techniques—modules and
interfaces; D.3.4 [Programming languages]: Proces-
sors—code generation; D.4.7 [Operating Systems]|: Or-

*Recommended by thesis supervisor: Assoc. Prof. Tibor
Krajcovic¢

Defended at Faculty of Informatics and Information Tech-
nologies, Slovak University of Technology in Bratislava on
October 17, 2016.

(© Copyright 2016. All rights reserved. Permission to make digital
or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies show this notice on
the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy other-
wise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from STU Press,
Vazovova 5, 811 07 Bratislava, Slovakia.

Vojtko, M. Formal Description of Embedded Operating Systems. In-
formation Sciences and Technologies Bulletin of the ACM Slovakia,
Vol. 8, No. 2 (2016) 62-68

ganization and Design—real-time systems and embedded
systems, standardization

Keywords

Processor Formal Description, Adaptation of Operating
Systems, Code Generation, Adaptation Process, Mod-
elling of Modules of Operating Systems, Modular Oper-
ating Systems, Layered Operating Systems, Embedded
Operating Systems

1. Introduction

The growing number of processor architectures leads to
the need for a methodology which allows fast and effec-
tive operating system adaptation to those architectures.
Future embedded systems will have multi-core/many-core
architectures [7] or mixed architectures consisting of mul-
ti-core processor clusters. New types of architectures will
introduce new types of operating systems which will be
self-adaptive [9]. New operating systems running in a
heterogeneous environment will need a database of exist-
ing processor ports, device modules and processing cores.
Modules and platform ports will be loaded to program
memories of the processor during system initialization or
will be loaded on-line during the system run-time.

Many-core systems are changing the traditional concept
of the processor as a system with several devices and a
few processing cores. The number of cores will grow in
the future together with the number of intelligent devices
that will be connected to a shared network [7]. This future
highly scalable network architecture calls for a change of
the standard architecture of operating systems into a dis-
tributed architecture.

Recent operating systems are seen as a software that in-
terfaces and extends the processor. In the future it will
be more than that. The operating system will be seen
as a framework or a database of modules and platform
ports. Consequently, the developer will choose modules
and platform ports from the database that fits architec-
ture of the processor. The operating system framework
will also provide tools that help the developer to create
modules and platform ports that are missing. Operat-
ing systems, like FreeRTOS [8] and many more, started
this transformation but it is only a beginning and many
aspects of the operating system will change in the future.

In this paper we analyse a generalized form of the adap-
tation process that is used during adaptation of any op-
erating system nowadays. This process does not support
an automated code generation that will be crucial in the

Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 8, No. 2 (2016) 62-68 63

future. We propose an extension to the process in order
to add formalization techniques to the processor descrip-
tion. This extension allows the generation of platform-
dependent parts of the operating system. As a result of
this formalization we specify the Processor Formal De-
scription (PFD) in this paper. The PFD describes each
device and processing core of the processor in a form that
is processable by the computer. From the PFD we gen-
erate a glue code, which interfaces the processor and the
operating system. Finally we use this glue code for the
implementation of modules of the operating system.

We also propose a framework that will support the adap-
tation process of embedded operating systems. The frame-
work consists of tools and services that help to describe
the processor [10], generate glue code [11], describe oper-
ating system modules that encapsulate devices and pro-
cessing cores of the processor [12], and implement those
modules [12].

2. Adaptation Process of OS

The adaptation process of the operating system (OS) is
mostly started because there is the need to use a specific
feature of the OS or there is the need to port specific OS
to an architecture that is in some way special or solves
the specified problem. The experience of the developer
with the OS plays a big role in this need. The adaptation
of the OSE OS to the many-core architecture Tilepro64 is
a good example [2]. The mapping of the OSE scheduler
was done on the mentioned many-core architecture. The
authors provide information about the steps of the adap-
tation of the operating system but the defined process of
the adaptation is strongly application specific.

Well known operating systems, such as FreeRTOS [8],
Avrx [3] or TinyOS [6], provide adaptation manuals to the
developer. Those manuals explain which parts of the OS
should be adapted during the adaptation to the processor.
In the FreeRTOS example, there exists a vast amount of
minimal working examples (MWEs) and adaptations to
many existing platforms. This sort of database of exam-
ples increases the popularity of this OS. But what will
happen when there is no existing example for the proces-
sor that the developer wants to use is that the developer
will have to implement the support for it. After the adap-
tation the developer should provide the solution to the
FreeRTOS community.

The FreeRTOS community has no strict rules for the plat-
form ports so they can differ from port to port. The
mostly affected part of the OS during the adaptation is
a platform-dependent part that interfaces OS modules to
the hardware. When each developer implements this layer
differently the code between platform ports is not man-
ageable.

Another aspect of the adaptation is a missing standard
that will induce manufacturers of processors to provide
datasheets in a standardized form. Each manufacturer
has its own templates. Another problem is that those
data-sheets were prepared for human so any computer
processing is nearly impossible. Our idea is to propose
such a standard that will describe the processor in a form
that will be processable by a computer.

Processor manufacturers provide also many MWEs for
their platforms. Many of the manufacturers implement

Datasheets of
Processing cores

Processor Datasheet

Implementation of
—> Platform-dependent <«—
Layer of OS

Analysis of Processor
Devices

Analysis of Processing
Cores

! !

Platform-dependent
Source Code [

Implementation of OS
Low Level Services

A /

Device Modules
Source Code

Implementation of
Device Modules

Figure 1: Generalized process of adaptation of an
operating system [12].

their own header files, source files and glue code. This
code is helpful when you use the OS on the processors
issued by one manufacturer (sometimes from one family
only). This code also differs between manufacturers.

The Figure 1 shows the generalised adaptation process
that can be divided into two workflows. The first workflow
shows an analysis of processing cores of the processor, a
design of OS modules and an implementation of a code
that uses features of the processor. The second workflow
shows an analysis of existing processor devices, a design
and an implementation of a code that manages processing
cores of the processor.

The first step of the adaptation of the OS to the processor
is an analysis. As we mentioned previously the analysis
can be split into two parts where devices and processing
cores are analysed separately. In this step the designer
analyses all the materials that are provided by the man-
ufacturer of the processor. Mostly it is in the form of a
datasheet of the processor or datasheets of the processing
cores of the processor.

2.1 Processing Cores

During the adaptation of processing cores the designer
has to find out how main services of the OS can be im-
plemented. The services are:

e core and OS initializing,
e interrupt handling and

e task switching.

During core and OS initialization all the operating modes
of the processing core, and stacks and memories of the OS
kernel are set. Most of the manufacturers provide MWEs
for the core initialization but they have to be adjusted to
the needs of the OS.

The interrupt handling is the service of the OS that is par-
tially implemented in assembly language. Most of the pro-
cessors provide an interrupt subsystem that can be used
by the OS. The developer has to implement an interface to

64 Vojtko, M.: Formal Description of Embedded Operating Systems

this subsystem and after that he can start implementing
interrupt routines that are mapped to a specific interrupt
source, as can be the task switch.

The task switch is crucial for any OS because it handles
the correct storing of the old task and loading of the new
task. During the task switch each register of the process-
ing core has to be stored before a task can be replaced by
another.

All previously mentioned services are highly platform-
dependent so in most cases those services have to be im-
plemented during almost every adaptation of the OS.

2.2 Devices

During the adaptation of devices the designer chooses de-
vices that will be needed for the successful completion of
the task.

The developer analyses the functionality and the commu-
nication interface of each device. The interface mostly
consists of registers and signals by which the OS can send
tasks.

The designer uses the registers of the device for the imple-
mentation of the glue code that acts as an interface that
the OS can understand. The interface consists of simple
read/write routines that access device registers. The de-
signer can use this interface during the implementation
of device modules of the OS. Many manufacturers imple-
ment their own glue code for their processors. This is very
helpful because the developer can concentrate on the OS
design. The problem is that this glue code differs between
manufacturers.

2.3 Generation of the Glue Code

In the past, there were projects that tried to generate glue
code for hardware. The glue code was mostly meant as
a code that was needed to connect two hardware com-
ponents with different interfaces [4]. Sometimes the re-
sulting glue contained even new pieces of hardware that
acted as a translator of communication [13] [5]. Those
techniques were used for a connection of the processing
core to the device through a set of separate signal lines.
Nowadays the majority of devices is connected to the pro-
cessing core via standardized interfaces, e.g. internal bus.
Also the interfaces of hardware are standardized [1], so the
complexity of the hardware interconnection is reduced.

3. Proposal of Novel Adaptation Process

The novel adaptation process was designed to help the
developer of the embedded OS to generate the platform-
dependent code of the OS for any chosen processor. Gen-
eration of code reduces the adaptation time and speeds
up the preparation of working prototypes. The process
also helps during the modelling and implementation of
the modules of the OS. Those modules manage the proces-
sor devices and processing cores. The process described
in the Figure 2 is suitable for embedded OSs that have a
layered architecture that consists of at least one platform-
dependent and one platform-independent layer [12].

The proposed process applies formalization techniques that
allow the generation of the mayor part of the platform-
dependent layer of the OS. The platform-dependent layer
consists of simple routines that are applied above registers

Datasheets of
Processing cores

Processor Datasheet

Processor Formal

Analysis of Processor . Analysis of Processin
v == > Description - o &

Devices Cores

T — |

Platform-dependent
Source Code
Generation

! ! !

Platform-dependent
Source Code

Description of Core
Modules

Description of Device
Modules

Module Formal
Description

Implementation of OS
Low Level Services

Device Modules
Source Code

Implementation of
Device Modules

_—

V

Figure 2: New proposal for the adaptation process
of the embedded operating system [12].

of devices and processing cores. Those routines are state-
less and perform just one operation at a time. Together
they create an interface that consists of many simple and
similar routines that can be produced by automatic gen-
eration of the code.

The advantages of generated code are:

e fast prototyping,
e reduction of error probability,
e hiding of hardware complexity,

e consistent and similar result across most of archi-
tectures and

e the developer can concentrate on the application do-
main.

3.1 Inputs of the Adaptation Process
As the input for the novel adaptation process the devel-
oper needs the following documents [12]:

e Processor datasheet - provides information about
processor devices;

e Processing cores datasheet - provides information
about the processing cores of the processor;

e Processor description file - represents a computer-
readable form of the processor datasheet.

The Processor Formal Description (PFD) is a new docu-
ment introduced in the adaptation process. It is the re-
sult of the processor analysis. Currently, the preparation
of PFD has to be done by the developer but in the future
it could be provided by the manufacturer of the proces-
sor. The PFD stores information about each item of the
processor that can be affected by an instruction from the
instruction set of the processor. More information can be
found in the section 4.

Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 8, No. 2 (2016) 62-68 65

3.2 Description of Devices and Cores

The new process formalizes most of the aspects of the
OS adaptation so there is no reference to any program-
ming language until the implementation phase. This is
different in the old adaptation process where the descrip-
tion language is mostly the same as the implementation
language. Programming languages have often limitations
that are impacting also the design of modules. One of
the limitations is that the programming language (in em-
bedded systems it is mostly C) has poor ability to model
parallel execution of tasks.

In the description of devices or cores there is no need for
such parallel design but the independence of the descrip-
tion from the programming language can help to express
aspects of devices or cores that can not be expressed by
a programming language (e.g. connections between de-
vices).

The glue code is a part of the code that has to be im-
plemented but from the perspective of the developer it
has no added value to the functionality of the OS. It just
interfaces the hardware to higher levels of the OS. The
nature of the glue code is simplicity that provides good
space for a code generation.

The glue code is generated from the description of devices
and cores (so from PFD). The device is accessed by writ-
ing to its registers or reading from them. Those simple
operations can be fully covered by the generator of the
glue code. The processing core is more complicated than
the device so only a part of its description can be used for
the generation of the code.

3.3 Description of OS Modules

The PFD is also used during the design of the OS mod-
ules. The described processor parts are "named items”
that can be used during the modelling of module be-
haviour (e.g. as the description in a flow chart diagram).

In the past we proposed the Module Formal Description
that is based on workflow diagrams. In that case the de-
scription uses parts of the PFD as building blocks that
can model whole behaviour of the OS module. As a con-
sequence the model can be easily converted to program-
ming language by another code generation that can create
skeletons of whole OS module [12].

4. Formal Description of the Processor

The formal description is needed to allow the automatic
generation of the platform-dependent code. The PFD de-
scribes a processor from the top to the bottom starting
from processor devices and processing cores [10]. A whole
mathematical model was implemented to cover any part
of the processor that can be affected by an instruction
from the instruction set of the processor, but there is no
space to cover this model in this paper. The model is fully
described in Vojtko et al. [12].

The Figure 3 shows the visualization of the PFD where
processor is the center of the model. Black arrows rep-
resent "consists of” relationship and red dashed arrows
represent “depends on” relationship. So we can say that
processor consists of devices and processing cores. A de-
vice consists of registers, I/O signals and interrupt sig-
nals. A processing core consists of registers, I/O signals,
instructions and operating modes. Any register consists

— & Depends On
— Contains

@ Part Option

(P1) Register Part
Processing Core
Signal

@ Operating Mode

@ Instruction

Processing Core

1
& Register

@ Processing Core

\/P Processor

Device

R1) Device Register

I1) Interrupt Signal

@ Interrupt Source
' Device Signal
Register Part
Part Option

Figure 3: Visualization of the PFD items [12].

of register parts and register parts can consist of options.
So the model of processor is a 5 level hierarchy of items.

From the perspective of the code generation the most im-
portant parts of the PFD are levels 3, 4 and 5. From
those levels the platform-dependent layer of the OS is
generated. Levels 1 and 2 have their importance in or-
ganization of code into logical modules (e.g. devices and
processing cores). Those two levels are helpful during the
modelling of OS device modules.

The ”depends on” relationship reflects a dependence that
can exist between items of third and fourth level (i.e. reg-
ister, signal and register part) of the PFD. There is a
dependence between two items when the change in one
item triggers a change in another. A good example of
dependence is the reset of the interrupt register that was
accessed by a read operation. When you try to read this
register you also start a sequence of events that resets
the register parts to their default values. The coverage of
dependencies in the PFD is extremely helpful during the
implementation of OS modules because the description
of dependencies informs the developer that he should be
vigilant when working with dependent registers so he im-
plements the module keeping those dependencies in mind.

In greater detail the PFD describes the communication
interface of devices and processing cores. This means
that the internal structure of hardware modules is hid-
den. This hiding of hardware structure is an advantage
compared to other examples of descriptions as is VHDL
or Verilog, because manufacturers do not want to publish
their hardware architecture. The Figure 4 shows the in-
put and output signals of the device and the registers of
the device. The signals and registers marked by red color
form the communication interface that is modelled by the
PFD. Also other signals (as are bus signals) exist in the
device but from the perspective of the PFD those signals
are not directly accessible by the processor instructions.

66 Vojtko, M.: Formal Description of Embedded Operating Systems

Interrupt Signals

3 g
i . —

‘52 —>S|gnals Device @
D 3
S Address ’ 5
S |:: > —>3
=S c
- e—5
@ 9 ™
3 Data Registers S —
o > Q.
S «—2
—

2 Bus Signals e
i R s

—————— >

Figure 4: Communication interface of device [12].

5. Formal Description of OS Modules

The module of the OS manages and controls the processor
device. It uses platform-dependent code prepared by the
glue code generator. The formal description can be used
during the design of OS modules, because it simplifies the
adaptation process. In Vojtko et al. [12] such a formal
description was proposed that uses existing register parts
and registers described in the PFD as blocks of a workflow
diagram (e.g. the Figure 5).

The module of the OS can be divided into 3 parts which
are modelled independently[12]:

e Module initialization,

e Interrupt handling and

e Data processing.

/Init begin)

l MR (mode reg.)

Set [ves]
UMD=NORMAL (sse:csrzgdce) (ofjrtsgn\:Elri{n)
(UsartMode) i P
[no]

BRGR (baud rate generator reg.)

Y
MR_uiplyes)
< |50@5.>>_'

[no] | Set CD (clock divider) Set FP
”|(BR = USCLKS/8*(1+OVER)/CD) (fractional part)

Set CD (clock divider)
(BR = USCLKS/CD/FIDI)

¥
—

/ Init end

Figure 5: Init function of USART (diagram) [12].

void init(int SYNC, int OVER, int CD, int FP){
int dataset = :
dataset = set USART MR UMD(0x(, USART MR UMD NORMAL);
dataset = set USART MR _SYNC(dataset, SYNC);
dataset = set USART MR OVER(dataset, OVER);
write USART MR (dataset);

dataset = set USART BRGR CD({(, CD);
dataset = set USART BRGR_FF(dataset, FF);
write USART BRGR(dataset);

}

Figure 6: Init function of USART (code) [12].

The module initialization models the process of the device
setup. The interrupt handling models the process of inter-
rupt source selection and appropriate interrupt response
routine. The data processing models the ways and means
of data preparation, transferring and receiving.

The Figure 5 shows how an initialization of universal se-
rial interface can be modelled. In the Figure there are two
envelopes (MR and BRGR) that represent two registers
of the universal serial interface. Those registers contain
parts that are set to a value specified by the option name.
The diagram allows to model the dependence between
parts of the register. In this example the setup of over-
sampling (OVER) will have effect only if synchronization
(SYNC) of the serial interface is set to asynchronous mode
(ASYNC).

From this diagram a code can be generated as is shown in
the Figure 6. The generated function uses four parameters
that are used for those blocks in the model that were not
set right in the diagram. As the figure shows there is no
condition generated for SYNC as was used in the diagram.
This is because the diagram informs that the set of OVER
will have no effect to behaviour of USART when SYNC
is not set to ASYNC value. As can be seen in the code
there is the variable dataset that is set to the needed value
and then this variable is written to the mode register. All
values of the register parts are written to the dataset so
only internal registers of the processor are used until the
write operation to the device register is done.

6. Framework for OS Adaptation

The concept of the OS adaptation framework is based
on the adaptation process. This framework will support
the adaptation process by a set of services and databases.
The Figure 7 represents the conceptual architecture of the
framework.

The framework will positively impact these tasks:

e PFD creation and validation,

e platform dependent code generation,

’/—Reusag

Description—5! ppp

Datasheets

Description

Mapping’
MFD e——
Generation

S~
Validation @ i
v Implementation/
GW{“:” SRC

Reusage,
SRC
Operating System Validation
Platform-dependent layer */Selection @
Selection
&
Scheduler Moldul M(;dUI

Figure 7: The Adaptation framework services.
(MFD - module formal description, db - database,
SRC - source code)

Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 8, No. 2 (2016) 62-68 67

OS module modelling and validation,

OS module mapping to the PFD,

code implementation and/or generation, and

selection of platforms and modules.

The framework will use 3 databases to store OS environ-
ment:

e database of PFDs,
e database of OS modules, and

e database of OS source codes.

6.1 Description of the Processor

The framework allows preparation of the PFD from the
processor datasheets. The prepared PFD will by validated
and sent to the database of PFDs. The stored descrip-
tion can be then used by the generator to produce the
platform-dependent code of the OS. PFDs are also used
for the mapping of the OS modules to communication
interfaces of the devices and processing cores.

Stored PFDs will be decomposed into devices and cores.
Each identified device will be inserted to a database un-
der validation, which will guarantee that device is not
presented in the database as a duplicity.

6.2 Description of the Module

Since the PFD covers only the communication interface
of the processor device or core, there is still need for the
development of the OS module that manages this device
or core. Workflow diagrams will be used for mapping of
the OS module to the communication interface. The re-
sulting model of an OS module will be validated and then
inserted to the database of Module Formal Descriptions
(MFDs). The documentation of a model will be a com-
pulsory part of the module description.

6.3 Module Code Generation/Implementation

The developer implements the OS module code from the
MFD . Some parts of module can be generated automat-
ically as a skeleton of the module which will help to the
developer during implementation. Implemented module
is then stored in a database of the OS source codes with
linkage to parent module description and compulsory doc-
umentation.

6.4 Selection of the OS Parts

As a part of a system design, the developer of embed-
ded system will have access to database of the OS source
codes. From this database the developer will choose a
platform-dependent layer and select a compatible device
and processing core modules for the chosen processor. He
can also add/describe/implement missing modules.

6.5 Databases

Full PFDs will be stored in the database of descriptions.
Those files will be also decomposed into separate devices
and processing cores. A problem can arise when the same
device exists in more processors so this situation has to
be solved by a unique identification of the device. In or-
der to avoid a duplicate upload of the existing PFD it

is necessary to create a protection mechanism. If exist-
ing processor was revised by the manufacturer it will be
possible to revise the PFD too.

The database can be used also during the creation of a
new PFD file where the developer can search for devices
and cores of the existing PFDs in the database and include
them into the new PFD, which will reduce duplicity and
description time.

The Database of MFDs will store descriptions of OS de-
vices and processing core modules. Similarly as the data-
base of PFDs this database will also use unique identifica-
tion of inserted MFDs. MFDs from the database can be
used for describing similar device modules as MWEs. Ex-
isting modules can be reused in the module description,
which will reduce description time.

Unique versions and ports of OS source code will be stored
in the database of sources. The developer will be able to
select platform-dependent code for the selected proces-
sor and he will be able to select source codes of modules
based on the description of a module, because there can
be presented more versions of the module.

7. Conclusions

The concept of the adaptation framework for embedded
operating systems was presented in this paper. The frame-
work will provide services for the developer of the embed-
ded operating system. These services will help during
the adaptation of the operating system to new proces-
sors. The adaptation time will be shorter and adaptation
complexity simpler. Until now, the formal description
of the processor and the generator of the platform de-
pendent code was developed. The generator generates
the platform-dependent code in programming language
C. The next step in the work is the design of a module
description tool that allows describing operating system
modules.

Acknowledgements. This work was supported by the
Ministry of Education, Science, Research and Sport of the
Slovak Republic within the Research and Development
Operational Program for the project: "University Science
Park of STU Bratislava”, ITMS 26240220084, co-funded
by the European Regional Development Fund.

References

[1] Accellera Systems Iniciative Inc. Open Core Protocol
Specification, 2013.

[2] V. Avula. Adapting operating systems to embedded manycores:
Scheduling and inter-process communication. Master’s thesis,
Uppsala universitet, 2014.

[3] L. Barello. AvrX Real Time Kernel, 2007.
http://www.barello.net/avrx/.

[4] P. Chou, R. Ortega, and G. Borriello. Synthesis of the
hardware/software interface in microcontroller-based systems. In
Computer-Aided Design, 1992. ICCAD-92. Digest of Technical
Papers., 1992 IEEE/ACM International Conference on, pages
488495, Nov 1992.

[5] Z. Guo, A. Mitra, and W. Najjar. Automation of ip core interface
generation for reconfigurable computing. In Int. Conference on
Field Programmable Logic and Applications (FPL 2006), Madrid,
Spain,, page 6, Aug 2006.

[6] P.Levis and D. Gay. TinyOS Programming. Cambridge University
Press, 2009.

[7]1 P.Ranganathan. From microprocessors to nanostores: Rethinking
data-centric systems. Computer, 44(1):39—48, Jan 2011.

[8] Real Time Engineers Ltd. The FreeRTOS Project, 2015.
http://www.freertos.org/.

68

Vojtko, M.: Formal Description of Embedded Operating Systems

[9] M. Seltzer and C. Small. Self-monitoring and self-adapting
operating systems. In Operating Systems, 1997., The Sixth
Workshop on Hot Topics in, pages 124-129, May 1997.

[10] M. Vojtko and T. Krajcovi¢. Adaptability of an Embedded
Operating System: a Formal Description of a Processor. In 10th
International Joint Conferences on Computer, Information,
Systems Sciences, and Engineering, page 4, Dec. 2014. in print,
http://fiit.stuba.sk/%7evojtko/VojtkoAoEOS.pdf.

[11] M. Vojtko and T. Krajcovi¢. Adaptability of an Embedded
Operating System: a Generator of a Platform Dependent Code. In
Cybernetics and informaticcs (K&I), 28th International
Conference on, page 6, Feb 2016.

[12] M. Vojtko and T. Krajcovi¢. Semi-automated process of
adaptation of embedded operating systems. Journal of Electrical
Engineering, page 10, 2016. in review process,
http://fiit.stuba.sk/%7evojtko/VojtkoJEEEC.pdf.

[13] E. Walkup and G. Borriello. Automatic synthesis of device drivers
for hardware/software co-design. Technical report, University of
Washington, Department of Computer Science and Engineering,
Seattle, Washington, Jun 1994.

Selected Papers by the Author

M. Vojtko, T. Krajcovi¢. Semi-Automated Process of Adaptation of
Embedded Operating Systems. In Journal of Electrical
Engineering, 2016. Sent for review.

M. Vojtko, T. Krajcovic. Adaptability of an Embedded Operating
System: a Generator of a Platform Dependent Code. In 2016
Cybernetics & Informatics (K&I), Levoca, Slovakia, 2016, pp.
1-6.

M. Vojtko. Adaptability of embedded operating systems. In PESW

2015 : proceedings of the 3rd embedded systems workshop, July
2015, pp. 1.

M. Vojtko, T. Krajcovi¢. Adaptability of an Embedded Operating
System: a Formal Description of a Processor. In In 10th
International Joint Conferences on Computer, Information,
Systems Sciences, and Engineering, 2014. Springer. In print.

M. Vojtko, T. Krajcovi¢, Prototype of Modular Operating System for
embedded applications. In Applied Electronics (AE), 2013
International Conference on, Pilsen, Czech Republic, 2013, pp.
1-4.

