
Analysis and Testing of Concurrent Programs

Zdeněk Letko
∗

Faculty of Information Technology
Brno University of Technology

Božetěchova 1/2, 613 00 Brno, Czech Rep.
iletko@fit.vutbr.cz

Abstract
In this paper, a methodology for deriving concurrency
coverage metrics which measure how well the synchro-
nisation and concurrency-related behaviour of tested pro-
grams has been examined is introduced. Next, our experi-
ences with testing multi-threaded programs using a noise
injection technique are discussed showing that there is no
silver bullet among the noise injection techniques. Fi-
nally, a novel use of stochastic optimisation algorithms in
the area of concurrency testing is proposed in the form
of their application for finding suitable combinations of
values of the many parameters of tests and the noise in-
jection techniques. The approach has been implemented
in a prototype way and tested on a set of benchmark pro-
grams, showing its potential to significantly improve the
testing process.

1. Introduction
The arrival of multi-core processors into regular comput-
ers accelerated development of software that uses multi-
threaded design to utilize the available hardware resources.
Threads which exist within a process share process re-
sources such as process memory which makes communi-
cation among threads seemingly easier but, on the other
hand, prone to errors. Errors in concurrency are not only
easy to cause, but also very difficult to discover and local-
ize due to the non-deterministic nature of multi-threaded
computation. This situation stimulates research efforts
which are currently devoted to all sorts of methods for
discovering errors in concurrency (or, for proving their
absence), including testing, dynamic analysis, as well as
various approaches of formal verification.

Program testing is the most common way of finding errors
in programs. In testing, a programmer or tester creates

∗Recommended by thesis supervisor: Prof. Tomáš Vojnar
Defended at Faculty of Information Technology, Brno
University of Technology on September 4, 2012.

c© Copyright 2014. All rights reserved. Permission to make digital
or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies show this notice on
the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy other-
wise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from STU Press,
Vazovova 5, 811 07 Bratislava, Slovakia.
Letko, Z. Analysis and Testing of Concurrent Programs. Information
Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 6, No. 1
(2014) 28-34

a test case which is defined by inputs and corresponding
outputs. The test case is executed. If a failure occurs,
there is an error in the program or in the test case. Test-
ing is often combined with coverage analysis—a process
of collecting, reviewing and analysing coverage metrics
which allow to measure occurrence of a considered phe-
nomena during the testing. Dynamic analysis which is
also often called runtime verification is based on program
tracing in which he gathered information from the test
execution is analysed with an intention to discover ab-
normal execution conditions. Techniques that do not ex-
ecute the program include static analysis, theorem prov-
ing, abstract interpretation and model checking. There
exist many different approaches ranging from rather sim-
ple code patterns static analyses to quite complex formal
automatic or semi-automatic methods such as abstract
interpretation.

Despite the intense research in the area, deterministic
testing, advanced static analyses, abstract interpretation,
and model checking which are able to prove correctness
of multi-threaded programs are still too demanding and
do not scale well. Instead, simple static analyses, non-
deterministic testing, and dynamic analysis are usually
used by software developers and testers to search for er-
rors in the code (this approach is sometimes called bug
hunting).

In this paper, testing and dynamic analysis of concurrent
programs are combined with metaheuristic techniques.
Stochastic optimisation techniques, also called metaheuris-
tics or search-based optimisation [14], employ a certain
degree of randomness in the process of finding as optimal
as possible solutions to complex well-defined problems.
Such problems commonly have a large space of possible
solutions (also known as search space) and no known effi-
cient and complete solution. Instead, heuristics are used
to partially explore the search space and favour promising
parts of the space with good solutions. In order to be able
to distinguish suitability of each solution, metaheuristic
techniques define the so-called fitness function which is
problem specific and express the quality of each candidate
solution with respect to the chosen goal. With a meta-
heuristics approach, there is no guarantee to find globally
optimal solutions. However, metaheuristics deliver sat-
isfactory solutions for complex problems in a reasonable
time.

One of the most popular techniques which is also used in
our approach are the genetic algorithms (GAs) [14]. GAs
are inspired by the evolution processes in nature, han-
dle a set of solutions (called population) in memory, and



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 6, No. 1 (2014) 28-34 29

during each iteration determine the next population using
a stochastic algorithm containing three major steps called
selection, crossover, and mutation. A solution in the ge-
netic algorithm is encoded as a vector of values (usually
but not necessarily of boolean values) called a genome.
The selection operation decides which available solutions
(also called parents) will be used to infer a new member
of the next population. The crossover operation com-
bines two parents, and the mutation operation modifies
(mutates) the result of the crossover. GA appropriately
combines exploration and exploitation and often can find
a good solution for the given problem.

2. Advanced Techniques of Testing Concurrent
Programs

A sequential program is executed as a single process with
a single thread of control. When it is executed with
the same input, the sequential program goes through the
same sequence of instructions and provides the same out-
put. This mostly deterministic behaviour makes analy-
sis and verification of sequential programs simpler. On
the other hand, a concurrent program is executed within
one or more processes including multiple threads of con-
trol. Non-deterministic scheduling causes that the multi-
threaded program executed with the same input multiple
times may produce different outputs.

A crucial issue when testing concurrent software is to test
as many different (and hopefully relevant) interleavings
as possible. To achieve that, one can use stress test-
ing which uses more active threads than the number of
available processors so that at any given time only some
threads are running, thus reducing the predictability of
interactions between threads. This technique is however
effective only a little. Advanced approaches to test con-
current software, which are described below, are based on
a repeated execution of the same test with the same in-
puts and on detecting whether an error occurred during
the execution. Such detection can be based on a failure
detection, assertion checking, or some dynamic detection
technique. During each execution, the techniques try to
affect the scheduler with an intention to see interleavings
which have not been spot during the previous executions
of the test. The number of different interleavings is in-
creased either by injecting of the so-called noise into test
executions or by enforcing deterministic scheduling.

Noise injection techniques [4] inject either randomly or
based on some heuristics a noise into the test execution.
The noise causes a delay in the execution of a selected
thread, giving other threads which are ready to run an op-
portunity to make a progress. An advantage of the noise
injection approach is that the method does not require any
modification of the execution environment nor a manual
modification of the test. The tested system is automati-
cally instrumented. The instrumentation typically injects
calls to a noise maker routine into the program code.
Threads executing the modified code then enter the noise
maker routine that decides—either randomly or based on
some heuristics—whether to cause a noise. Notice that
already the instrumentation itself introduce some noise
into the execution because the thread must execute the
code injected by the instrumentation. The technique is
mature enough to be used for testing of real-life software.
Interleavings obtained by the noise injection technique are
all valid. Therefore, the technique does not introduce any
false alarms.

Deterministic testing [2] controls thread scheduling de-
cisions during the test execution and systematically ex-
plores the interleaving space. Such tools are inspired by
the work on model checking and can be seen as light-
weight model checking (or execution-based model check-
ing). The tools explore alternative scheduling scenarios
using re-initialisation of the tested program. To avoid
undesirable modification of the execution environment,
modern tools for deterministic testing, e.g., [12], focus on
application programming interfaces providing synchroni-
sation functionality to the tested programs. The calls of
synchronisation routines of the run-time environment or
OS are intercepted and passed to the deterministic sched-
uler. This scheduler is able to stop threads which should
not proceed. The system scheduler therefore schedules
only threads allowed to run by the deterministic sched-
uler. The deterministic scheduler resumes stopped threads
when needed. Despite the introduced techniques are able
to handle large programs thanks to various optimisations,
they still suffer from certain limitations. First, they are
sensitive to other sources of non-determinism (e.g., in-
put/output events) which make it difficult to replay an al-
ready captured scenario. Second, during the replay phase,
they usually allow to run only one thread which has a large
impact on the performance of the tested program.

In comparison with the noise injection techniques, tech-
niques based on deterministic control over scheduling are
able to achieve a higher coverage of the synchronisation
scenarios in small and middle size programs thanks to
carefully chosen test scheduling scenarios. These tech-
niques also make debugging much easier because they
are able to provide the interleaving scenario that leads
to an error and allow programmer to replay this scenario.
Therefore, from our point of view, modern deterministic
testing techniques are better for debugging and testing
of isolated modules for which unit tests exist while noise
injection techniques still provide good results for testing
of complex systems.

3. Concurrency Coverage Metrics
In testing, testers need measures that can be used to asses
how well a program has been tested, how good a test is, or
whether further testing is necessary. For this purpose, the
concept of coverage metrics is used. Coverage metrics are
based on coverage tasks representing different phenomena
whose occurrence in the behaviour of a tested program
is considered to be of interest. Probably the most pop-
ular measure is the code coverage which measures how
much of the code (the number of lines, the number of ex-
ecuted statements, the number of branch conditions cov-
ered both ways, etc.) has been executed during a test
execution. A high code coverage is a necessary condition
for a good verification. The concurrency coverage metrics
discussed in this chapter measure how well the synchroni-
sation mechanisms and various other concurrency-related
aspects of the behaviour has been exercised.

A common goal of the testing process is to reach a full cov-
erage, i.e., to cover all tasks of the coverage domain. How-
ever, obtaining a full coverage for a complex software and
nontrivial metrics is often difficult and expensive. More-
over, for many nontrivial metrics, it is very difficult and
in general undecidable to statically determine reachable
coverage tasks and hence full coverage. Coverage met-
rics without a known full coverage can, however, still be
used in various ways. First, they can be used for compar-



30 Letko, Z.: Analysis and Testing of Concurrent Programs

isons of testing techniques and tests. Second, they can be
used to control termination of the testing process within
the so-called saturation-based testing where the so-called
saturation effect, i.e., a situation when the obtained cov-
erage stops growing, can be used to determine whether
the testing can be stopped. Finally, they are also useful
in search-based testing discussed in Section 5.

In [9], several new coverage metrics suitable for saturation-
based or search-based testing of concurrent programs are
provided. These metrics are based on coverage tasks de-
rived from the information about program behaviour that
is gathered or computed by various dynamic analyses—
Eraser [13], GoldiLocks [5], AVIO [11], and GoodLock [1].
In fact, the idea of inferring new metrics from these analy-
ses is rather generic and can be applied to other dynamic
as well as static analyses (even those that will appear
in the future) too. The proposal is motivated by the idea
that within the development of such analyses, behavioural
aspects of concurrent programs that are highly relevant
for the existence of synchronisation-related errors have
been identified. Hence, it makes sense to measure how
well the aspects of the behaviour tracked by such analy-
ses have been covered during testing.

3.1 Methodology of Deriving New Coverage Metrics
To derive metrics satisfying the criteria set up above, we
propose to get inspired by various existing dynamic (and
possibly even static) concurrency error detection tech-
niques. This is motivated by two observations: (i) These
detection techniques focus on those events occurring in
runs of the analysed programs that appear relevant for
detection of various concurrency-related errors. (ii) The
techniques build and maintain a representation of the con-
text of such events that is important for detection of pos-
sible bugs in the program. Hence, trying to measure how
many of such events have been seen, and possibly in how
many different contexts, seems promising from the point
of view of relating the growth of a metrics to an increasing
likelihood of spotting an error.

The described idea is very generic, and one can speak
about a new class of concurrency coverage metrics that
can be obtained in the described manner. A crucial step
in the creation of a new coverage metrics based on some
error detection algorithm is to choose suitable pieces of
information available to or computed by the detection al-
gorithm, which are then used to construct the domain
of the new coverage metrics such that the other, above
mentioned criteria are met. This leads to a trade off
among the precision of the metrics and the amount of
information tracked, the associated computational com-
plexity, and speed of saturation.

4. Noise Injection Heuristics
In this section, heuristics for noise injection are discussed.
Furthermore, the results of a systematic comparison [10]
of several noise injection techniques available in the IBM
Concurrency Testing Tool (ConTest), which represents
the state of the art of noise injection, as well as our newly
proposed coverage-based heuristics [10] on a set of test
cases are summarised.

Existing works discuss three main aspects of heuristic
noise injection: (i) How to make noise, i.e., which type of
noise generating mechanism should be used, (ii) where to
inject noise during a test execution, i.e., at which program

location and at which of its executions (if it is executed
multiple times), and (iii) how to minimise the amount of
noise needed for manifestation of an already detected er-
ror when debugging. This section mainly targets the first
two aspects.

There exist several ways how a scheduler decision can be
affected in Java. The noise maker can use calls of yield()
to cause a context switch or sleep() and wait() to cause
a delay. The IBM ConTest tool comes with several more
noise seeding techniques. The synchYield technique com-
bines the yield technique with entering a monitor that is
shared among all threads, the busyWait technique loops
for some time, the haltOneThread technique occasionally
stops one thread until any other thread cannot run, and
the timeoutTampering heuristics randomly modifies the
time-out used when calling sleep() in the tested pro-
gram.

There also exist multiple noise placement techniques for
determining where to put a noise. The problem of noise
placement can be divided into two subproblems: (i) Which
program locations are suitable for injection of noise and
(ii) which particular occurrence of selected program loca-
tions in an execution of the program actually affect by the
noise. IBM ConTest allows to inject a noise before and af-
ter any concurrency-related event (including, accesses to
class member variables, static variables, and arrays, and
the calls of wait, interrupt, notify, monitorenter, and
monitorexit routines).

4.1 Suggestions for Noise-based Testing
The previously published systematic comparison of noise
injection heuristics [10] shows that there is no silver bullet
among the many existing noise seeding and noise place-
ment heuristics. Moreover, it identifies weak and strong
aspects of the different heuristics in different contexts and
can thus serve as a guide for a user which intend to apply
the heuristics in the testing process. Apart form that, the
comparison also shows that the newly proposed heuris-
tics may in certain cases provide an improvement in the
testing process. The results of the comparisons are sum-
marised within several suggestions for noise-based testing
presented below.

The results indicate that there is no optimal configura-
tion, and for each test case and each testing goal, a dif-
ferent setting of noise heuristics provide the best result.
Moreover, using a wrong noise injection technique can
in some cases degrade the quality of the testing process.
Therefore, if no information concerning the tested pro-
gram is available, a good option is to start with the IBM
ConTest default configuration which has the IBM Con-
Test random parameter enabled. This parameter makes
IBM ConTest select noise heuristics and their parameters
at random before each execution. This setting does often
not achieve the overall best results as shown above but it
provides reasonably good results with a minimal effort.

Otherwise, one has to set up the noise seeding and place-
ment heuristics manually. As for noise seeding heuristics,
good results were often provided by the yield, synchYield,
wait, and busyWait heuristics. The yield and synchYield
heuristics have a minimal impact on the performance of
the test while still providing the best improvement in
some cases. The wait and busyWait heuristics cause a con-
siderable performance degradation but they can help to



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 6, No. 1 (2014) 28-34 31

test even rarely executed synchronisation scenarios in com-
plex programs. The results indicate that in most cases
higher noise frequency does not mean a higher proba-
bility of spotting an error or higher coverage. On the
other hand, a high noise frequency used with a demand-
ing heuristics (e.g., busyWait) has a negative impact on
the performance of the test.

Both the considered advanced noise seeding heuristics pro-
vide in some cases a considerable improvement of the test-
ing process. Therefore, it is worth to enable them and
test whether they positively affect results of the consid-
ered test case. Our results indicate that the performance
degradation caused by these techniques is not high. Fur-
ther, the impact of the timeoutTampering heuristics on
tests which contain calls to timed sleep and wait meth-
ods is high. We therefore suggest to perform a simple
static analysis which detects calls of these methods in the
tested program and enables the timeoutTampering heuris-
tics if such calls are present in the code.

As for noise placement heuristics, the heuristics which
focus the noise on a single randomly chosen variable com-
bined with the advanced noise seeding techniques and our
newly proposed heuristics often provide the best results.
We therefore suggest to prefer these heuristics which put
noise only on carefully selected places to heuristics which
simply put noise randomly or to too many places. If the
performance degradation is not an issue, our heuristics
with noise strength computation often provides better re-
sults than the heuristics without this feature. And, if
the performance is important, our heuristics without the
noise strength computation often provide the best results.

To sum up, although we provided same hints on using the
noise techniques above, these advises are not definite since
different testing scenarios can quite significantly vary as
we proved by our experiments. Hence, if it is possible, we
suggest to experiment with more noise settings.

5. Search-based Testing of Concurrent Programs
Search-based testing applies metaheuristic search tech-
niques [14] to the problem of software testing. In order
to apply metaheuristics to software engineering problems
like testing, one has to consider the following steps [3]:
(i) Decide whether the problem is suitable for search-
based techniques, (ii) formulate the problem as a search/
optimisation problem and define a representation for the
possible solutions, (iii) define the fitness function, (iv) start
with the simple Hill-climbing algorithm—if the results
are encouraging, i.e., better than random search, consider
other local search and genetic approaches, and (v) select
an appropriate metaheuristic technique, its parameters
and operators if necessary.

Above, we show that there is no silver bullet among the
many existing noise injection heuristics. Actually, some
configurations can even decrease the probability of an er-
ror manifestation. This is helpful for run-time healing of
errors [7], but it is highly undesirable for detecting them.
Moreover, the number of possible settings of the noise
injection (and also of the test itself) together with the
considerable time needed to run a test in order to eval-
uate the efficiency of a certain noise configuration makes
exhaustive searching for suitable noise configurations im-
practical. This is exactly the case where metaheuristic
search techniques can help.

5.1 Concurrent Programs Testing as a Search Prob-
lem

Most types of the noise seeding or placement heuristics
are adjustable by one or more parameters influencing their
behaviour and efficiency (e.g., noise seeding heuristics are
often parameterized by their strength). Further, one can
combine several noise placement and seeding techniques
within one execution. Finally, it is usually the case that
there exist multiple test cases for a given program that
can also be parametric.

With respect to the above, we formulate the test and noise
configuration search problem (the TNCS problem) as the
problem of selecting test cases and their parameters to-
gether with types and parameters of noise placement and
noise seeding heuristics that are suitable for a certain test
objective.

Formally, let TypeP be a set of available types of noise
placement heuristics each of which we assume to be pa-
rameterized by a vector of parameters. Let ParamP be
a set of all possible vectors of parameters. Further, let
P ⊆ TypeP×ParamP be a set of all allowed combinations
of types of noise placement heuristics and their parame-
ters. Similarly, we can introduce sets TypeS , ParamS ,
and S for noise seeding heuristics. Next, let C ⊆ 2P×S

contain all the sets of noise placement and noise seed-
ing heuristics that have the property that they can be
used together within a single test run. We denote ele-
ments of C as noise configurations. Further, like for the
noise placement and noise seeding heuristics, let TypeT
be a set of test cases, ParamT a set of vectors of their
parameters, and T ⊆ TypeT×ParamT a set of all allowed
combinations of test cases and their parameters. We let
TC = T × C be the set of test configurations.

Now, the TNCS problem can be expressed as searching
for a test configuration from TC suitable wrt. some given
objective function. One can also consider the natural gen-
eralisation of the TNCS problem to searching for a set of
test configurations, i.e., a member of 2TC .

Metaheuristic algorithms need an objective function in or-
der to compute suitability of the candidate solution (the
fitness function). Fitness of a test configuration tc ∈ TC
wrt. the objective functions has typically to be evalu-
ated by a repeated execution of the test case encoded in tc
with the test parameters and noise configuration that are
also a part of tc. Note that the repeated execution makes
sense due to the non-determinism of thread scheduling.
The evaluation of individual test runs must of course be
combined, which can be done, e.g., by computing the av-
erage evaluation or by computing a cumulative evaluation
across all the performed executions.

In [8], our initial experiments done with the basic lo-
cal search algorithm—the Hill-climbing algorithm [14] are
presented. In the experiment, the Hill-climbing algorithm
is compared with the random search approach for solving
the simple TNCS problem. Our results indicate that the
metaheuristic algorithms can be used to solve the TNCS
problem because even the simple Hill-climbing algorithm
is in some cases able to overcome the random approach.
But, the Hill-climbing algorithm often gets stuck in a lo-
cal optimum. The landscape analysis indicates that the
landscape contains many local optima which are hard to
overcome for the simple Hill-climbing algorithm.



32 Letko, Z.: Analysis and Testing of Concurrent Programs

5.2 A Genetic Approach to the TNCS Problem
In order to utilise a genetic algorithm to solve the TNCS
problem with the considered set of noise configurations,
we let the particular test configurations play the role of in-
dividuals. We encode the test configurations as vectors of
integers. The test configuration is either reduced to solely
a noise configuration (when a single test case without pa-
rameters is considered), or it consists of the noise configu-
ration extended by one or more specific entries controlling
the test case settings. We, however, concentrate here on
the noise configurations only, which form vectors of num-
bers in the range (0, 0, 0, 0, 0, 0)–(1000, 5, 3, 6, 2, 2). Here,
the first entry controls the noiseFreq setting, the next two
control the sharedVar and coverage-based noise placement
heuristics. The last three entries control the setting of the
basic and advanced noise seeding heuristics.

We consider the standard one-point, two-point, and uni-
form element-wise (any-point) crossover operators [14].
Mutation is also done on an element-wise basis, and it
handles ordinal and non-ordinal entries differently. Non-
ordinal entries are set to a randomly chosen value from
the particular range (including the current value). Or-
dinal entries (e.g., entries encoding the strength of noise
or the parameter controlling the number of threads the
test should use) are handled using the standard Gaussian
mutation [14] (with the standard deviation set to 10 % of
the possible range or minimal value 2). Finally, we con-
sider standard proportional and tournament-based fitness
selection operators [14] as they are implemented in the
ECJ library.

Based on the results presented in [6], we found as suit-
able the following setting of the parameters of genetic
algorithms for the considered concretisation of the TNCS
problem: Size of population 20, two different selection
operators (tournament among 4 individuals and fitness
proportional), the any-point crossover with a higher prob-
ability (0.25), a low mutation probability (0.01), and two
elites (that is 10 % of the population). We choose the
low mutation probability 0.01 despite our results indicate
that the individuals with highest fitness are most often
found using the higher probability (0.25). This decision
is motivated by our intention to prefer exploitation over
exploration as explained below. This parameter setting is
used in the experiments presented below.

In [6], we proposed a complex objective function for the
TNCS problem. In particular, the stress is on looking for
data races, but as our experiments show, the approach
helps in finding other kinds of concurrency-related errors
too. Namely, we aim at (1) maximising weighted coverage
under the concurrency coverage metric GoldiLockSC [9]
(denoted as WGoldiLockSC below), (2) maximising the
number of warnings GLwarn produced by the GoldiLocks
algorithm [5] (denoted as GLwarn), (3) maximising the
number of detected real errors due to data races (denoted
as error), and (4) minimising the execution time. Our
fitnees function has form:

WGoldiLockSC + 1000 ∗GLwarn + 10000 ∗ error
time

6. Experimental Results
We evaluate our approach on 5 test cases containing con-
currency-related errors. The test cases are listed in Ta-
ble 1. In the table, the Param column indicates the num-
ber of the test case parameters and the number of possible

values of each parameter (e.g., 2, 3 means that the test
takes two parameters, the first with two possible values
and the second with three possible values).

We compare our genetic approach with the random ap-
proach which represents the state of the art in the noise-
based testing of concurrent programs. In the random ap-
proach, we randomly select 2000 test and noise config-
urations and let our infrastructure evaluate them in the
same way we evaluate individuals in the genetic approach.
Table 1 summarises our results. The table is based on av-
erage results obtained from 10 executions of the genetic
and random approach. It is divided into three parts. In
the left part (Test case), the test cases are identified, and
their size and information about their parameters are pro-
vided.

6.1 An Evaluation of the Best Individuals
The middle part of Table 1 (Best configuration) contains
three columns which compare the best individual obtained
by our genetic approach and found by the random ap-
proach. The Gen. column contains the average number
of generations (denoted as gen below) within which we
discovered the best individual according to the considered
fitness function. The numbers indicate that we are able
to find the best individual according to the considered
fitness function within the first quarter of the considered
generations.

The Error column of the Best configuration section of Ta-
ble 1 compares the ability of the best individual to detect
an error. The column contains two values (x1/y1). The
first value x1 is computed as the fraction of the average
number of errors found by the best individual computed
by the genetic algorithm and the average number of errors
discovered by the best individual found by the random
generation provided that an equivalent number of execu-
tions is provided to the random approach (this number is
computed as gen times the size of the population which
is 20). The second number y1 is computed as the fraction
of the average number of errors found by the best individ-
ual computed by the genetic algorithm and the average
number of errors discovered by the best individual found
randomly in 2000 evaluations. The –/– value represents
a situation where none of the best individuals was able to
detect the error within the allowed 5 executions. The H
symbol means that the genetically obtained best individ-
ual did not spot any error while the best individual found
by the random generation did (we discuss this situation
in more detail below).

Similarly, the Time column of the Best individual section
of Table 1 compares average times needed to evaluate the
best individual obtained by our approach and the best in-
dividual found by the random approach. Again, two val-
ues are presented (x2/y2). The first value x2 is computed
as the average time needed by the best individual found
by the random approach if only gen ∗ 20 evaluations are
considered, divided by the average time the genetically
found best individual needed. The second value y2 shows
the average time needed by the best individual found by
the random generation when it was provided with 2000
evaluations, divided by the average time needed by the
genetically found best individual.

The values that are higher than 1 in the Error and Time
columns of the Best individual section of Table 1 represent



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 6, No. 1 (2014) 28-34 33

Table 1: An experimental comparison of the proposed genetic approach with the random approach to
setting test and noise parameters

Test case Best configuration Search process
Name Params Gen. Error Time Error Error∗ Time
Airlines 5,5,10 15 3.0 / 1.7 3.8 / 2.5 3.2 8.8 3.0
Animator – 25 21.8 / 10.9 1.1 / 1.3 4.3 5.4 1.3
Crawler – 22 – / – 1.3 / 1.5 0.3 1.1 3.3
Crawler∗ – 25 – / – 1.1 / 1.1 0.4 1.0 2.8
FTPServer 10 14 1.2 / 1.0 3.8 / 4.7 0.9 1.7 1.9
Rover 7 3 H 33.7 / 19.4 3.2 8.8 3.0

how many times our approach outperforms the random
approach. In general, one can see that the best individ-
ual found by our genetic approach has a higher probability
to spot a concurrency error, and it also need less time to
do so. Even if we let the random approach to perform
2000 evaluations, our best individual is still better. Ex-
ceptions to this are the Rover and Crawler test cases.
In the Crawler test case, the error manifests with a very
low probability. The best individuals in both cases were
not successful in spotting the error (note, however, that
the error was discovered during the search process as dis-
cussed below). In the Rover test case, the best individual
found by the genetic algorithm was not able to detect
an error and some of the best individuals found by the
random approach did detect the error (as again discussed
below, the error was discovered during the search process
too). This results from the fact that the genetic approach
converged to an individual that allows a very fast eval-
uation (over 30 times faster than the best configuration
found by the random generation). This, however, lowered
the quality of the found configuration from the point of
view of error detection, indicating that as a part of our
future research, we may think of further adjusting the
fitness function such that this phenomenon is suppressed.

6.2 An Evaluation of the Search Process
The right part of Table 1 (Search process) provides a dif-
ferent point of view on our results. In this case, we are not
interested in just one best individual learned genetically
or by random generation that is assumed to be subse-
quently used in debugging or regression testing. Instead,
we focus on the results obtained during the search process
itself. The genetic algorithm is hence considered here to
play a role of heuristics that directly controls which test
and noise configurations should be used during a testing
process with a limited number of evaluations that can be
done (2000 in our case).

This part of the table contains three columns which com-
pare the genetic and random approaches wrt. their suc-
cesses in finding errors and wrt. the time needed to per-
form the 2000 evaluations. The first column (Error) com-
pares the average number of errors spot during the search
process and the average number of errors spot during the
evaluation of 2000 randomly chosen configurations of the
test and noise heuristics. The Error∗ column compares
the average number of errors detected by our genetic ap-
proach with the average number of errors spot by the
random approach when the random approach is provided
with the same amount of time as the genetic approach.
Finally, the Time column compares the average total time
needed by the random approach in 2000 evaluations and
the average time needed by our genetic approach. Again,

the values higher than 1 in all the columns represents
how many times our approach outperforms the random
approach.

The cumulative results presented in the Error and Error∗

columns show that our approach mostly outperforms the
random approach. The exceptions in the Error column
reflect the already above mentioned preference of the exe-
cution time in our fitness function, which is further high-
lighted by the Time column. For instance, in the worst
case (the Crawler test case), our genetic approach is more
than 3 times faster but in total discovers three times less
errors. On the other hand, in the best cases (the Airlines
and Rover), we found three times more errors in three
times shorter time. To give some idea about the needed
time in total numbers, the average time needed to eval-
uate 2000 random individuals took on average 32 hours
(whereas the genetic approach needed just 10.5 hours),
and the average time needed to evaluate 2000 random
individuals of our biggest test case FTPServer took 101
hours (whereas the genetic approach needed on average
just 53 hours).

Overall, our results show that our approach outperforms
the random approach. They also indicate that we should
probably partially reconsider our fitness function that puts
sometimes too much stress on the execution time, which
can in some cases (demonstrated in the Crawler test case)
be counter-productive.

7. Conclusions
In this paper, we have concentrated on noise injection
techniques that help to examine different thread interleav-
ings during testing and dynamic analysis of concurrent
programs and to detect even rarely manifesting errors.
Our main contribution can be divided into three parts
concerning concurrency coverage metrics, noise injection
heuristics, and a use of metaheuristics in noise-based test-
ing.

The first part of our contribution is a methodology of
deriving new coverage metrics from dynamic (and pos-
sibly also static) analyses designed for discovering bugs
in concurrent programs. Using this idea, we have de-
rived several new concrete metrics. These metrics cap-
ture important features of the behaviour of concurrently
executing threads. Therefore, they are suitable for de-
bugging and testing of concurrent programs. We have
performed an empirical evaluation of these metrics, which
has shown that several of them are indeed better for use
in saturation-based and search-based testing than various
previously known metrics.



34 Letko, Z.: Analysis and Testing of Concurrent Programs

In the next part of the paper, we have provided a sum-
mary of comparison of different noise injection heuristics
including the new heuristics which we proposed in [10].
Our results have shown that there is no silver bullet among
the noise seeding and placement heuristics. Even our
newly proposed heuristics wins over the existing ones only
in some cases.

Finally, we have proposed a way of using search tech-
niques to improve quality of noise-based testing and dy-
namic analysis through finding suitable combinations of
parameters of tests and noise heuristics. We have for-
malised this problem as the test and noise configuration
search (TNCS) problem. We have proposed a way how
to use genetic algorithms to solve the TNCS problem and
a complex objective function suitable for data race de-
tection which is based on a dynamic analysis algorithm
(namely, the GoldiLocks algorithm). Our experiments has
shown that the objective function has been also successful
at looking for other kinds of concurrency errors. We have
shown on a set of benchmark programs that our approach
significantly outperforms the commonly used approach of
randomly selecting noise configurations.

Acknowledgement
This work was supported by the Czech Science Foun-
dation (projects P103/10/0306 and 102/09/H042), the
Czech Ministry of Education (projects COST OC10009
and MSM 0021630528), the EU/Czech IT4Innovations
Centre of Excellence project CZ.1.05/1.1.00/02.0070, and
the internal BUT projects FIT-S-11-1 and FIT-S-12-1.

References
[1] S. Bensalem and K. Havelund. Dynamic Deadlock

Analysis of Multi-threaded Programs. In Proc. of
PADTAD’05, Haifa, Israel, volume 3875 of LNCS,
pages 208–223, 2005. Springer-Verlag.

[2] R. H. Carver and K.-C. Tai. Modern Multithreading:
Implementing, Testing, and Debugging
Multithreaded Java and C++/Pthreads/Win32
Programs. Wiley-Interscience, 2005.

[3] J. Clarke, J. Dolado, M. Harman, R. Hierons,
B. Jones, et al. Reformulating Software Engineering
as a Search Problem. IEE Proceedings – Software,
volume 150, pages 161–175, June 2003.

[4] O. Edelstein, E. Farchi, E. Goldin, Y. Nir,
G. Ratsaby, and S. Ur. Framework for Testing
Multi-threaded Java Programs. Concurrency and
Computation: Practice and Experience, volume 15,
pages 485–499, January 2003.

[5] T. Elmas, S. Qadeer, and S. Tasiran. GoldiLocks: A
Race and Transaction-aware Java Runtime. In Proc.
of PLDI’07, pages 245–255, New York, NY, USA,
2007. ACM Press.

[6] V. Hrubá, B. Křena, Z. Letko, and T. Vojnar.
Testing of concurrent programs using genetic
algorithms. Accepted for publication at SSBSE’12,
2012.

[7] B. Křena, Z. Letko, R. Tzoref, S. Ur, and
T. Vojnar. Healing Data Races On-the-fly. In Proc.
of PADTAD’07, pages 54–64, New York, NY, USA,
2007. ACM Press.

[8] B. Křena, Z. Letko, R. Tzoref, S. Ur, and
T. Vojnar. A Platform for Search-based Testing of
Concurrent Software. In PADTAD’10, pages 48–58,
New York, NY, USA, 2010. ACM.

[9] B. Křena, Z. Letko, and T. Vojnar. Coverage
Metrics for Saturation-based and Search-based
Testing of Concurrent Software. In Proc. of RV’11,
San Francisco, USA, volume 7186 of LNCS, pages
177–192, 2012. Springer-Verlag.

[10] Z. Letko, T. Vojnar, and B. Křena. Influence of
Noise Injection Heuristics on Concurrency
Coverage. In Proc. of MEMICS’11, Lednice, Czech
Rep., volume 7119 of LNCS, pages 123–131, 2012.
Springer-Verlag.

[11] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO:
Detecting Atomicity Violations Via Access
Interleaving Invariants. In Proc. of Architectural
Support for Programming Languages and Operating
Systems—ASPLOS’ 06, pages 37–48, New York,
NY, USA, 2006. ACM Press.

[12] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and Reproducing
Heisenbugs in Concurrent Programs. In Proc. of
Symposium on Operating Systems Design and
Implementation—OSDI’08, pages 267–280,
Berkeley, CA, USA, 2008. USENIX Association.

[13] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro,
and T. Anderson. Eraser: A Dynamic Data Race
Detector for Multi-threaded Programs. In Proc. of
Operating Systems Principles—SOSP’97, pages
27–37, New York, NY, USA, 1997. ACM Press.

[14] E.-G. Talbi. Metaheuristics: From Design to
Implementation. Wiley Publishing, 2009.


