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Abstract
This extended abstract of the doctoral thesis studies the-
oretical properties of grammars with restricted derivation
trees. After presenting the state of the art concerning this
investigation area, the research is focused on the three
main kinds of the restrictions placed upon the derivation
trees. First, it introduces completely new investigation
area represented by cut-based restriction and examines
the power of the grammars restricted in this way. Se-
cond, it investigates several new properties of path-based
restriction placed upon the derivation trees. Specifically,
it studies the impact of erasing productions on the power
of grammars with restricted path and introduces two cor-
responding normal forms. Then, it describes a new re-
lation between grammars with restricted path and some
pseudoknots. Next, it presents a counterargument to the
power of grammars with controlled path that has been
considered as well-known so far. Finally, it introduces a
generalization of path-based restriction to not just one
but several paths. The model generalized in this way is
studied, namely its pumping, closure, and parsing prop-
erties.
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1. Introduction
The formal language theory is an inherent part of the
theoretical computer science particularly concerned with
the study of the formal models. The formal models are
mathematical objects used to describe the formal lan-
guages. The fundamental models include grammars and
automata. The former are used to generate words and
the latter accept them.

Grammars are the kind of the rewriting models that start
from a specified symbol (i.e., start symbol). Then, the
symbol is modified according to the given set of rewrit-
ing productions. Each production is composed of two
components—the left-hand side and the right-hand side
of a production. The application of a production on a
word is done by rewriting a symbol equivalent to the left-
hand side of a production by its right-hand side in the
word. This process is known as a derivation step. During
the computation of a derivation step, just one symbol is
rewritten in the word. Given a start symbol of a grammar,
a derivation step is computed repeatedly by applying the
productions from the given set. Once the resulting word
is composed of the symbols that cannot be rewritten any-
more, the process of applying derivation steps ends and
the resulting word belongs to the language of the gram-
mar.

Essentially, the grammars are composed of a finitely many
symbols that are rewritten by finitely many production in
finitely many derivation steps. In this way, the grammars
represent a finite description of even infinite languages.
By the notion of infinite languages are meant those lan-
guages that contains infinitely many words. Since the
most of the languages commonly used in practice are infi-
nite, the grammars represent a powerful tool how to deal
with them. In the formal language theory, there exists a
huge variety of grammars which essentially differ in two
domains. Specifically, in the complexity of the produc-
tions and in the way how to select appropriate production
to be applied in a derivation step.

Generally, the complexity of rewriting productions can be
seen from two angles—theoretical and practical. Theore-
tical viewpoint: As little as possible restrictions placed on
the form of the rewriting productions in a rewriting model
is desirable. More specifically, the more complex rewrit-
ing productions are, the larger class of languages may the
model generate. In other words, to generate complex lan-
guages, complex productions are needed. By the notion
of a form of a production, namely the number of the sym-
bols on its left-hand side is meant. Practical viewpoint:
Grammars are theoretical models that are implemented
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in many practical applications. From the perspective of
cost-effective implementation, the simple rewriting pro-
ductions are desirable. As simple-enough productions for
effective implementation, those of the form with just one
symbol on their left-hand side are considered. Such kind
of productions are referred to as context-free productions,
since they can be applied without any consideration of a
context of currently rewritten symbol.

Non-regulated rewriting models like grammars and au-
tomata belong to the well-known core of the formal lan-
guage theory and they are frequently used in practice.
Indeed, automata including its variants underlie lexical
analysers (see [3] and [30]), context-free grammars rep-
resent the basis of both top-down as well as bottom-up
parsers (see [3] and [4]), etc. However, the power of the
models with simple productions is indeed smaller than re-
quired for usage in many practical applications. On the
other hand, the models that use only simple productions
are usually easier to implement. As a background, it is
desirable to extend context-free grammars as in many ap-
plications there are some natural phenomena which can-
not be captured by context-free rewriting. More precisely,
the motivation is based on the observation that many
of the languages commonly used in practice, including
programming and natural languages, are not context-free
(see [15], [16], [34], [35], and [39]). Consequently, that
means such languages cannot be generated by a grammar
with only context-free productions. For these reasons, the
idea whether or not it would be possible to use grammars
with only context-free productions and increase the cor-
responding power in some other way—without changing
the form of rewriting productions.

Basically, this can be achieved by two fundamental app-
roaches—using a kind of a regulation of rewriting or using
more than one grammar with context-free productions in
a model: Using a kind of a regulation of rewriting. By the
notion of a regulation, the way how to select appropriate
production to be applied is meant. Indeed, a situation is
common in which, given a word, it is possible to apply
several productions. Informally, the essential idea is rep-
resented by the observation that a regulation mechanism
somehow prescribes the order of productions the grammar
must follow. Therefore, many different kinds of such a
regulation have been introduced in order to ensure select-
ing appropriate production. All of the resulting models
based on a kind of regulation are collectively referred to
as regulated rewriting models. Using more than one gram-
mar with context-free productions in a model. Roughly
speaking, the main underlying idea is based on the obser-
vation that from the cooperation of several simple mod-
els, we can obtain more power than from each of them
if they work separately. These systems were also thorou-
ghly studied and the corresponding investigation area is
referred to as the theory of grammar systems. However,
we will deal with them only rarely in this work.

Informally, the goal of this work is to introduce a model
that generates more than context-free languages and is u-
sable in practice. From the theoretical viewpoint it means,
the model should be able to generate namely the pro-
gramming languages and the languages used in linguistics
(e.g., multiple repetition, cross-dependencies, and copy-
language). From the practical viewpoint, it should be
possible to develop sophisticated parsing methods work-
ing in a polynomial time for the model.

One way to extend the power of context-free grammars is
to consider context-sensitive grammars where the produc-
tions are more complex. Indeed, context-sensitive gram-
mars contain the productions with even more than a sin-
gle symbol on the left-hand side. However, despite their
great power, generating complex languages by context-
sensitive grammars actually leads to several fundamental
problems making their practical usage problematic (see
[6], [8], [29], [36], [44], and [45]). Specifically, for context-
sensitive grammars, many problems are undecidable, it is
difficult to describe the derivation by a graph structure,
etc.

One of the many others approaches extending the power
of context-free grammars is represented by matrix gram-
mars introduced by Abraham in [1]. The fundamental
underlying principle in a derivation step in matrix gram-
mars is that not just one but a fixed number of context-
free productions are required to be applied in a given or-
der. This provides synchronization among different parts
of a generated word and many non-context-free languages
can be generated in this way (see [32], [38], and[46]).

There are lots of other well-known approaches for extend-
ing the power of context-free grammars which preserve
the context-free nature of productions. Specifically, Ran-
dom Context Grammars (see [43]), Programmed Gram-
mars (see [37]), Ordered Grammars (see [14]), Indian and
Russian Parallel Grammars (see [25]), Indexed Grammar
(see [2]), and many others. However, these approaches do
not represent the main topic of this work although some
connections can probably be found.

2. Derivation Tree Restricted Models
One of the power-extending approaches is represented by
the restrictions placed upon the derivation trees. Given a
grammar, by the notion of a derivation tree, a graph struc-
ture depicting the application of productions on the start
symbol up to the resulting word is meant. Indisputably,
the investigation of context-free grammars with restricted
derivation trees represents an important trend in today’s
formal language theory (see [7], [9], [11], [13], [24], [17],
[19], [20], [22], [26], [27], [28], [31], [33], [41], and [42]). In
essence, these grammars generate their languages just as
ordinary context-free grammars do but their derivation
trees must satisfy some simple prescribed conditions.

The following two sections gives an informal overview of
the results related to the investigation of derivation-tree-
restricted grammars. Through those two sections, it is
assumed that the reader is familiar with the graph theory
(see [5]) and the theory of formal languages (see [29]),
including the theory of regulated rewriting (see [10]).

2.1 Level Based Restriction
The idea of restrictions placed upon the derivation trees of
context-free grammars is introduced by Culik and Maurer
in [9] and the resulting grammars restricted in this way are
referred to as tree controlled grammars. In essence, the
notion of a tree controlled grammar is defined as follows:
take a context-free grammar, G, and a regular language,
R. A word, w, generated by G belongs to the language de-
fined by G and R if there is a derivation tree, t, for w in G
such that all levels of t (except the last one) are described
by R. Given a tree controlled grammar, (G,R), G and
R are referred to as controlled grammar and control lan-
guage, respectively. Culik and Maurer investigate several



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 4, No. 4 (2012) 15-23 17

basic properties of tree controlled grammars—namely, the
membership problem and the power.

Based on the original definition of a tree controlled gram-
mar, Păun studies the modifications where many well-
known types of both controlled grammars and control lan-
guages are considered in [33]. More precisely, Păun stud-
ies controlling the levels of the derivation trees of a regular
grammar by several types of a control language, control-
ling the levels of the derivation trees of a context-free
grammar without erasing productions by several types of
a control language, and controlling the levels of the deriva-
tion trees of a context-free grammar by a finite language.

It is well-known that tree controlled grammars with a
context-free grammar controlled by a regular language
characterize the class of recursively enumerable languages.
Thus, the question arises whether or not it is possible to
achieve the same power as tree controlled grammars have
when the levels of the derivation trees are restricted by a
subregular control language. This problem is studied by
Dassow and Truthe in [13], where many types of subreg-
ular languages are considered. Dassow and Truthe study
primarily controlling the levels of the derivation trees of
a context-free grammar by two types of a language such
that one is a subset of the other and controlling the le-
vels of the derivation trees of a context-free grammar by
many different types of subregular languages. The same
authors, Dassow and Truthe, also study hierarchies of
subregularly tree controlled languages in [11] and [12].
They present controlling the levels of the derivation trees
of a context-free grammar by the union of monoids, by
regular languages with restricted descriptional complexi-
ty, and by the language accepted by a deterministic finite
automaton with at most given number of states.

Stiebe in [40] states that there is a tree controlled gram-
mar for every linearly bounded queue automaton. Then,
Stiebe proves that controlling the levels of the derivation
trees of a context-free grammar by the language accepted
by a minimal finite automaton with at most five states
characterize the class of context-sensitive languages. If,
additionally, erasing productions in a controlled grammar
are allowed, controlling the levels of the derivation trees
of a context-free grammar by the language accepted by a
minimal finite automaton with at most five states chara-
cterizes the class of recursively enumerable languages.

Turaev, Dassow, and Selamat in [41] examine tree con-
trolled grammars with bounded nonterminal complexity
and demonstrate that seven nonterminals in a tree con-
trolled grammar are enough to generate any recursively
enumerable language. Then, they establish that three
nonterminals in a tree controlled grammar are enough
to generate any regular language and any regular sim-
ple matrix language can be generated by a tree controlled
grammar with three nonterminals. Finally, they demon-
strate that three nonterminals in a tree controlled gram-
mar are enough to generate any linear language. The
same authors in [42] state several further nonterminal-
complexity-related properties of tree controlled grammars.

2.2 Path Based Restriction
As an attempt to increase the power of context-free gram-
mars without changing the basic formalism and loosing
some basic properties of context-free languages (decida-
bility, efficient parsing, etc.), Marcus, Mart́ın-Vide, Mi-

trana, and Păun in [26] study a new type of a restriction
in a derivation: a derivation tree in a context-free gram-
mar is accepted if it contains a path described by a control
language. More precisely, they consider two context-free
grammars, G and G′. A word, w, generated by G belongs
to the language defined by G and G′ if there is a deriva-
tion tree, t, for w in G such that there exists a path of
t described by the language of G′. Based on this restric-
tion, they introduce a path controlled grammar and study
several properties of this model. Specifically, they study
controlling a path of the derivation trees of several types
of grammars by a regular language and controlling a path
of the derivation trees of a regular grammar by a linear or
context-free language. Then, they establish two kinds of
pumping properties depending on the type of a controlled
grammar, some consequences to the closure properties of
path controlled grammars, and a basic parsing property
for path controlled grammars. They also investigate the
power of path controlled grammars. However, there exists
a serious problem with the correctness of the proof they
present.

As a continuation of the investigation of path-based re-
strictions, Mart́ın-Vide and Mitrana study parsing pro-
perties of path controlled grammars, closure properties of
path controlled grammars, and several decision problems
for path controlled grammars in [27] and [28].

2.3 Goals of the Thesis
As it clearly follows from the previous sections, level-
based restriction is well-studied and the most of the im-
portant questions have been answered. On the other
hand, in the case of path-based restriction many basic
properties including the generative power have not been
successfully investigated yet. Moreover, several other re-
strictions placed upon the derivation trees have not yet
been introduced at all. Indeed, the restrictions placed
upon the cuts of the derivation tree as well as upon seve-
ral paths of the derivation trees represent completely new
investigation areas. Thus, the goals of the doctoral thesis
consist in three investigation areas.

• First, to introduce new investigation area represen-
ted by cut-based restrictions and establish the gen-
erative power of the model restricted in this way.

• Second, to establish several new results in the inves-
tigation of one-path-restricted grammars introduced
in [26].

• Third, to generalize one-path-restricted model into
several paths and investigate several its properties.

3. New Results in Restrictions Placed upon De-
rivation Trees

First we reformulate the fundamental definitions so that
all derivation-tree-based restrictions can be studied using
the same notation. Then, we present new results in the
derivation-tree based restrictions investigation area.

Since restriction placed upon a level, a path, and a cut is,
in essence, a restriction placed upon a derivation tree, we
use a slightly modified but equivalent formulation of the
definitions stated in [26], [27], and [28]. Consequently,
aforementioned modifications allow us to investigate all
derivation-tree-based restrictions using the same termi-
nology—i.e., restriction on the levels (see [9], [13], [33],
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[41], and [42]), the paths (see [7], [17], [18], [19], [20], [?],
[22], [23], [24], [26], [27], and [28]), or the cuts (see [24]).
More precisely, all restrictions placed upon the derivation
trees are covered by the general notion of tree controlled
grammar that generates its language under several kinds
of the restrictions.

Definition 3.1. For a sequence, s, of the nodes of a
derivation tree, the word obtained by concatenating all
symbols of s is denoted as word(s).

Definition 3.2. The class of regular, linear, ε-free
context-free, context-free, propagating scattered context
grammars, matrix grammars, context-sensitive, and un-
restricted grammars is denoted as REG, LIN, CFε, CF,
PSC, MAT, CS, RE, respectively.

Definition 3.3. The set of all regular, linear, ε-free
context-free, context-free, context-sensitive, and unrestric-
ted grammars is denoted as GREG, GLIN, GCFε , GCF,
GCS, and GRE, respectively.

Note that hereafter the notion tree controlled grammar is
used in different meaning than in the previous section, see
the following definitions of a tree controlled grammar and
the definitions of the languages as well as the classes that
tree controlled grammars generate under various kinds
of restrictions that are introduced in the following three
sections.

Definition 3.4. A tree controlled grammar is a pair,
(G,R), where G = (V, T, P, S) is a controlled grammar,
and R is a control language over V .

Definition 3.5. Let (G,R) be a tree controlled gram-
mar where G = (V, T, P, S), then (G,R)△(x), x ∈ V ∗,
denotes the set of the derivation trees with frontier x in
G.

In the research presented through this section, we do not
directly deal with level-based restriction placed upon the
derivation trees. However, for the sake of completeness,
note the following definitions related to level-based re-
striction placed upon the derivation trees.

Definition 3.6. Let (G,R) be a tree controlled gram-
mar. The language that (G,R) generates under the levels
control by R is denoted by levelsL(G,R) and defined by the
following equivalence:

For all x ∈ T ∗, x ∈ levelsL(G,R) if and only if there
is a derivation tree, t ∈ G△(x), such that for all levels, s,
of t (except the last one), word(s) ∈ R.

Definition 3.7. For some language classes X and Y,
the class of tree controlled languages under the levels con-
trol is defined as
levels-TC(X,Y) = {levelsL(G,R) : (G,R) is a tree con-
trolled grammar in which G ∈ GX and R ∈ Y}.

Next, we summarize the most interesting results and point
out some important open questions. Based on the State of
the Art in the area of restrictions placed upon the deriva-
tion trees summarized above, this work deals in principle
with three kinds of derivation-tree based restrictions, cut-
based, path-based, and several-path-based.

3.1 Cut Based Restriction
In this section, we introduce new derivation-tree-based
restrictions of tree-controlled grammars which are based
on the restriction placed upon the cuts. Then, we in-
troduce several properties of grammars with restriction
placed upon the cuts. Specifically, we investigate the
power.

3.1.1 Definitions
Definition 3.8. Let (G,R) be a tree controlled gram-

mar. The language that (G,R) generates under the cuts
control by R is denoted by cutL(G,R) and defined by the
following equivalence:

For all x ∈ T ∗, x ∈ cutL(G,R) if and only if there is
a derivation tree, t ∈ G△(x), and a set, xM , of its cuts
such that

1. for each c ∈ xM , word(c) ∈ R, and

2. xM covers the whole t.

Definition 3.9. The class of tree controlled languages
under the cuts control is defined as
cut-TC(CF,REG) = {cutL(G,R) : (G,R) is a tree con-
trolled grammar in which G is a context-free grammar and
R ∈ REG} and the class of tree controlled languages with
ε-free controlled grammar under cuts control is defined as
cut-TCε(CFε,REG) = {cutL(G,R) : (G,R) is a tree
controlled grammar in which G is an ε-free context-free
grammar and R ∈ REG}.

Definition 3.10. Let ≼ be a binary relation on a se-
quence, xM , of the cuts such that for each two cuts,
c1, c2 ∈ xM , c1 ≼ c2 if and only if for each node, n2, of
c2 either there is a node, n1, of c1 such that n2 is a direct
descendent of n1, or n1 = n2. In other words, n1 ̸= n2

implies n2 is a direct descendent of n1.

Definition 3.11. Let (G,R) be a tree controlled gram-
mar. The language that (G,R) generates under the or-
dered-cuts control by R is denoted by ord-cutL(G,R) and
defined by the following equivalence:

For all x ∈ T ∗, x ∈ ord-cutL(G,R) if and only if
there is a derivation tree, t ∈ G△(x), and a sequence,
c1x, c2x, . . . ,
cnx, of the cuts of t, for some nx ≥ 1, such that

1. for all i = 1x, 2x, . . . , nx, word(ci) ∈ R,

2. {c1x, c2x, . . . , cnx} covers the whole t, and

3. cix ≼ c(i+1)x
for all i = 1, 2, . . . , n− 1.

Definition 3.12. The class of tree controlled langua-
ges under the ordered cuts control is defined as
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ord-cut-TC(CF,REG) = {ord-cutL(G,R) : (G,R) is
a tree controlled grammar in which G is a context-free
grammar and R ∈ REG} and the class of tree controlled
languages with ε-free controlled grammar under ordered
cuts control is defined as
ord-cut-TCε(CFε,REG) = {ord-cutL(G,R) : (G,R) is
a tree controlled grammar in which G is an ε-free context-
free grammar and R ∈ REG}.

3.1.2 Results
Concerning cut-based restriction placed upon the deriva-
tion trees, we have introduced two fundamental types of
such kind of a restriction and thus, we have opened a
new investigation area in derivation-tree-restricted mod-
els. Next, we have proved that both restrictions increase
the power of context-free grammars so they characterize
RE:

ord-cut-TC(CF,REG) = cut-TC(CF,REG) = RE.

An important open problem consists of the investigation
of cut controlled grammars where ε-productions are for-
bidden. Consequently, the grammars restricted in this
way should be placed into the relation with some other
well-known language families, such as CS, and the deci-
ding the question whether or not:

ord-cut-TCε(CFε,REG) = CS,

cut-TCε(CFε,REG) = CS.

Next problem is represented by the descriptional comple-
xity of ord-cut-TC(CF,REG) and cut-TC(CF,REG).
The results presented above are based on the transforma-
tion of an unrestricted grammar into Pentonnen normal
form. However, using Geffert normal form, the number
of nonterminals in the resulting cut controlled grammar
would be reduced.

Another future research idea is represented by the con-
trolling the cuts of the derivation trees in which several
types of subregular control languages are considered. In
this way, the question whether or not a kind of a subregu-
ral language is enough to increase the power of controlled
grammar properly. Consequently, the relation between
the power of level-based and cut-based models restricted
in this way would be founded out.

3.2 Path Based Restriction
In this section, we introduce a path-based restriction on
tree-controlled grammars that is equivalent to the model
introduced in [26], [27], and [28]. Next, we formally define
the pseudoknot structure represented as a language. We
introduce new results related to the normal forms and the
presence of erasing productions in a controlled grammar.
Then, this section presents a relationship between biology
and the formal language theory in the form of word re-
presentation of pseudoknots generated by path controlled
grammars. Last section of this part being a counterar-
gument against the proof of the power of path controlled
grammars that has been considered as correct so far.

3.2.1 Definitions
Definition 3.13. Let (G,R) be a tree controlled gram-

mar. The language that (G,R) generates under the path

control by R is denoted by pathL(G,R) and defined by the
following equivalence:

For all x ∈ T ∗, x ∈ pathL(G,R) if and only if there
is a derivation tree, t ∈ G△(x), such that there is a path,
p, of t with word(p) ∈ R.

Definition 3.14. For X,Y ∈ {LIN,CF}, the class of
tree controlled languages under the path control is defined
as
path-TC(X,Y) = {pathL(G,R) : (G,R) is a tree con-
trolled grammar in which G ∈ GX and R ∈ Y} and the
class of tree controlled languages with ε-free controlled
grammar under path control is defined as
path-TCε(CFε,Y) = {pathL(G,R) : (G,R) is a tree
controlled grammar in which G is an ε-free context-free
grammar and R ∈ Y}.

Definition 3.15. Let (G,R) be a tree controlled gram-
mar that generates the language under path control by R,
where G = (V, T, P, S). (G,R) is in 1st normal form if
every production, r : A → x ∈ P , is of the form A ∈ V −T
and x ∈ T ∪ (V − T ) ∪ (V − T )2.

Definition 3.16. Let (G,R) be a tree controlled gram-
mar that generates the language under path control by R,
where G = (V, T, P, S). (G,R) is in 2nd normal form if
every production, r : A → x ∈ P , is of the form A ∈ V −T
and x ∈ T ∪ ((V ∪ {E}) − T )2 where E ∩ V = ∅ and
E → ε ∈ P . The alphabet of G should now include E,
with E ̸∈ V .

Definition 3.17. Let Σ be an alphabet. The following
languages over Σ are pseudoknots:

1. {xyxRyR : x, y ∈ Σ∗},
{u1xu2yu3x

Ru4y
Ru5 : x, y, ui ∈ Σ∗, 1 ≤ i ≤ 5},

2. {xyxRzzRyR : x, y, z ∈ Σ∗},
{u1xu2yu3x

Ru4zu5z
Ru6y

Ru7 : x, y, z, ui ∈ Σ∗, 1 ≤
i ≤ 7},

3. {xyxRzyRzR : x, y, z ∈ Σ∗},
{u1xu2yu3x

Ru4zu5y
Ru6z

Ru7 : x, y, z, ui ∈ Σ∗, 1 ≤
i ≤ 7},

4. {xyzxRyRzR : x, y, z ∈ Σ∗},
{u1xu2yu3zu4x

Ru5y
Ru6z

Ru7 : x, y, z, ui ∈ Σ∗, 1 ≤
i ≤ 7}.

Note that presented pseudoknots form obviously non-con-
text-free languages.

3.2.2 Results
As a continuation of the investigation of path-based res-
trictions introduced in [26] and studied in [27] and [28],
we have considered the impact of ε-productions in path
controlled grammars to the power and we have stated
that ε-productions can be removed from a path controlled
grammar without affecting its language:

path-TC(CF,CF) = path-TCε(CFε,CF).
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We have established two Chomsky-like normal forms for
path controlled grammars and we have formulated algo-
rithms that transform a path controlled grammar into its
normal form:

• Let L ∈ path-TC(CF,CF). Then, there exists
a tree controlled grammar, (G,R), in 1st normal
form such that L = pathL(G,R).

• Let L ∈ path-TC(CF,CF). Then, there exists
a tree controlled grammar, (G,R), in 2nd normal
form such that L = pathL(G,R).

A future investigation idea consists of the modifying a
general parsing methods that are based on Chomsky nor-
mal form such that it will be able to parse path controlled
grammars in a polynomial time.

Another practically motivated idea is represented the re-
lation between path controlled grammars and the theory
of pseudoknots. We have demonstrated several typical
pseudoknots used in biology represented by the words of
non-context-free languages. We have demonstrated some
pseudoknots belong to path-TC(LIN,LIN):

{xyxRyR : x, y ∈ Σ∗} ∈ path-TC(LIN,LIN),
{xyxRzzRyR : x, y, z ∈ Σ∗} ∈ path-TC(LIN,LIN),
{xyxRzyRzR : x, y, z ∈ Σ∗} ∈ path-TC(LIN,LIN).

Apparently, there is a huge variety of another pseudo-
knot structures in biology. For example, {xyzxRyRzR :
x, y, z ∈ Σ∗} and it is an open question whether or not
those pseudoknots can be generated by tree controlled
grammars with linear components that generate the lan-
guage under path control.

The last presented result deals with a reflection on the
power of path controlled grammars that has been con-
sidered as well-known (see [26]) for more than last ten
years. However, we have presented an argument against
the correctness of the proof given in [26] that states

path-TC(CF,CF) ⊆ MAT.

We have concluded the counterargument by stating that
the aforementioned inclusion still may hold; however, it
cannot be proved in the way given in [26]. More precisely,
we have found the language tha can be generated by a
grammar with controlled path. However, this language
cannot be generated by the grammar obtained by the
construction introduced in [26]. Apparently, the power
of path controlled grammar still represents an open prob-
lem.

3.3 Several Paths Based Restriction
This section being a generalization of path-restricted re-
writing model to a restriction placed upon not just one
but several paths. Then, it presents several properties of
the model restricted in this way. Specifically, the power of
a kind of all-paths-restricted rewriting model, closure and
pumping properties in relation to the number of controlled
paths, and the approximation of the power for n-path
restricted model. The last section of this part presents an
application related result concerning the parsing of path
restricted languages.

3.3.1 Definitions
Definition 3.18. Let (G,R) be a tree controlled gram-

mar. The language that (G,R) generates under the all-
paths control by R is denoted by all-pathsL(G,R) and de-
fined by the following equivalence:

For all x ∈ T ∗, x ∈ all-pathsL(G,R) if and only if
there is a derivation tree, t ∈ G△(x), such that for all
paths, s, of t, word(s) ∈ R.

Definition 3.19. The class of tree controlled langua-
ges under all paths control is defined as
all-path-TC(CF,REG) = {all-pathsL(G,R) : (G,R) is
a tree controlled grammar in which G is a context-free
grammar and R ∈ REG}.

Definition 3.20. Let (G,R) be a tree controlled gram-
mar. The language of tree controlled grammar under
not common n-path control by R, n ≥ 1, is denoted by

nc-n-pathL(G,R) and defined by the following equivalence:

For all x ∈ T ∗, x ∈ nc-n-pathL(G,R) if there exists
a derivation tree, t ∈ G△(x), such that there is a set, Qt,
of n paths of t such that for each path, p ∈ Qt, word(p) ∈
R.

Definition 3.21. For X,Y ∈ {REG,LIN,CF}, the
class of tree controlled languages under not-common n-
path control is defined as
nc-n-path-TC(X,Y) = {nc-n-pathL(G,R) : (G,R) is
a tree controlled grammar with G ∈ GX and R ∈ Y}.

Definition 3.22. Let p1, p2 be any different two paths
of a derivation tree, t. Then, p1 and p2 contain at least
one common node (the root of t, root(t)), and p1 ends in
a different leaf of t than p2. Let cmn(p1, p2) denote the
maximal number of consecutive common nodes of p1 and
p2.

Definition 3.23. Let Qt be a nonempty set of some
paths of a derivation tree, t. The paths of Qt are divided
in a common node of t if and only if for some k ≥ 1,
cmn(p1, p2) = k for every pair (p1, p2) ∈ Q2

t . Let all paths
of Qt be divided in a common node of t. If Qt = {p},
then mQt = |word(p)|, otherwise mQt ≥ 1 denotes the
maximal number of consecutive common nodes of all paths
in Qt.

Definition 3.24. Let (G,R) be a tree controlled gram-
mar. The language of tree controlled grammar under n-
path control by R, n ≥ 1, is denoted by n-pathL(G,R) and
defined by the following equivalence:

For all x ∈ T ∗, x ∈ n-pathL(G,R) if there exists
a derivation tree, t ∈ G△(x), such that there is a set, Qt,
of n paths of t that are divided in a common node of t and
for each path, p ∈ Qt, word(p) ∈ R.

Definition 3.25. For X,Y ∈ {REG,LIN,CF}, the
class of tree controlled languages under n-path control is
defined as
n-path-TC(X,Y) = {n-pathL(G,R) : (G,R) is a tree
controlled grammar with G ∈ GX and R ∈ Y}.
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Conventions

Hereafter, tree controlled grammars that generate the lan-
guage under the n-path control are referred to as n-path
tree controlled grammars.

Note that if we consider 0 controlled paths (i.e., n =
0 and consequently card(Qt) = 0) in the definition of

n-pathL(G,R), then, clearly, the power of such a model
equals CF.

Definition 3.26. Let (G,R) be a tree controlled gram-
mar. Consider n-pathL(G,R), for n ≥ 1. If for each
word, z ∈ n-pathL(G,R), there exist a derivation tree,
t ∈ G△(z), a set of its paths, Qt, mQt ≥ 1, and a parti-
tion, word(p) = uvwxy, for each path, p ∈ Qt, satisfying
the premise of the pumping lemma for linear languages
such that it holds

• 1 ≤ mQt ≤ |u|,
then n-pathL(G,R) is I-n-pathL(G,R),

• |u| < mQt ≤ |uv|,
then n-pathL(G,R) is II-n-pathL(G,R),

• |uv| < mQt ≤ |uvw|,
then n-pathL(G,R) is III-n-pathL(G,R),

• |uvw| < mQt ≤ |uvwx|,
then n-pathL(G,R) is IV -n-pathL(G,R),

• |uvwx| < mQt ≤ |uvwxy|,
then n-pathL(G,R) is V -n-pathL(G,R).

Definition 3.27. For i ∈ {I, II, III, IV, V}, n ≥ 1,
the class of i-n-path tree controlled languages is defined
as
i-n-path-TC(CF,LIN) = {i-n-pathL(G,R) : (G,R) is
tree controlled grammar in which G is a context-free gram-
mar and R ∈ LIN}.

3.3.2 Results
It is well-know that path controlled grammars where the
controlling grammar is regular characterize the same lan-
guage class as its controlled grammar (see [26]) do. We
have proved that the power of context-free grammars re-
mains unchanged even if we restrict all paths in their
derivation trees by regular languages:

CF = all-path-TC(CF,REG).

Since for each context-free grammar, there is a regular
language that describes all paths in all its derivation trees;
and there is no regular language which increases its power
when used to restrict the paths, if we consider tree con-
trolled grammars (G,R) with R ∈ REG, then, obviously,
the power of such a model equals CF for any n ≥ 1.
Therefore, we investigate the properties of tree controlled
grammar with non-regular control language. More specif-
ically, we study tree controlled grammars that generates
their languages under n-path control with linear control
languages.

We have introduced a generalization of path controlled
grammars so that they generate the language under the

restriction placed on not just one but several paths. Con-
sequently, we have found some subsets of n-path con-
trolled grammars so their languages satisfy pumping pre-
mises similar to well-known premises stated by pumping
lemmata for CF, LIN, and REG—more precisely:

• If L ∈ I-n-path-TC(CF,LIN), n ≥ 1, then there
are two constants, k, q ≥ 0, such that each word,
z ∈ L, with |z| ≥ k can be written as

z = u1v1u2v2 . . . u4nv4nu4n+1

with 0 < |v1v2 . . . v4n| ≤ q and for all i ≥ 1,
u1v

i
1u2v

i
2 . . . u4nv

i
4nu4n+1 ∈ L.

• If L ∈ III-n-path-TC(CF,LIN), n ≥ 1, then
there are two constants,k, q ≥ 0, such that each
word, z ∈ L, with |z| ≥ k can be written as

z = u1v1u2v2 . . . u2n+2v2n+2u2n+3

with 0 < |v1v2 . . . v2n+2| ≤ q and for all i ≥ 1,
u1v

i
1u2v

i
2 . . . u2n+2v

i
2n+2u2n+3 ∈ L.

• If L ∈ V-n-path-TC(CF,LIN), n ≥ 1, then there
are two constants,k, q ≥ 0, such that each word,
z ∈ L, with |z| ≥ k can be written as

z = u1v1u2v2u3v3u4v4u5

with 0 < |v1v2v3v4| ≤ q and for all i ≥ 1,
u1v

i
1u2v

i
2u3v

i
3u4v

i
4u5 ∈ L.

A natural question that still remains open is whether or
not there are similar pumping properties also for the lan-
guages of II-n-path-TC(CF,LIN) and IV-n-path-TC
(CF,LIN).

We have also proved some closure properties, that is

• for n ≥ 1, i ∈ {I, II, III, IV, V} and TG, TR ∈
{REG,LIN,CF},

n-path-TC(TG, TR), i-n-path-TC(TG, TR)

are closed under intersection with regular languages,
union, and non-erasing homomorphism,

• for n ≥ 1, i ∈ {I, III, V}, i-n-path-TC(CF,LIN)
are not closed under concatenation, intersection, and
complement.

Since n-path controlled grammars are a natural gener-
alization of grammars with just one path controlled, we
have studied several properties that are well-known for
path controlled grammars in the case of controlling given
n paths. Most importantly, we have tried to establish
the power for n-path controlled grammar. We have found
the approximation of the power that can be applied also
on grammars with just one path controlled. However,
this approximation does not say too much since it is well-
known that PSC is not closed under erasing homomor-
phism. Thus, we have informally concluded that: ”We
either have the power to check what we need but not to re-
move it (using PSC) or vice versa (using MAT).”More
precisely, we have stated the following:

Let L ∈ n-path-TC(CF,CF), for n ≥ 1. Then
there exists L′ ∈ PSC with L = h(L′) for some homo-
morphism h.
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Finally, we have studied several parsing properties of path-
based restriction which is indisputably one of the most im-
portant language-class-characterizing property from the
practical viewpoint. Formally, we have studied a polyno-
mial time parsing possibilities and we have stated that:

• For a tree controlled grammar, (G,R) with an un-
ambiguous context-free grammar, G, and a linear
control language, R, the membership

x ∈ nc-n-pathL(G,R),

n ≥ 1, is decidable in O(|x|k), for some k ≥ 0.

• For a tree controlled grammar, (G,R), where G is
a context-free grammar and R ∈ LIN, there is a
tree controlled grammar, (G′, R′), such that G′ does
not contain unit productions and nc-n-pathL(G,R) =

nc-n-pathL(G
′, R′), n ≥ 1.

• For tree controlled grammar (G,R) where G is m-
ambiguous LR grammar, m ≥ 1, and an unam-
biguous language R ∈ LIN, the membership x ∈
nc-n-pathL(G,R), n ≥ 1, is decidable in O(|x|k), for
some k ≥ 0.

The significant disadvantage concerning n-path tree con-
trolled grammars is that the number of n paths satisfying
the properties of Def. 3.24 is strictly limited by the length
of the right-hand sides of the productions of underlying
context-free grammar. That is, given a general context-
free grammar, G, and a linear language, R, controlling
the paths, the membership of a certain language might
be decidable. However, given the same context-free lan-
guage as L(G) as a context-free grammar, H, in Chom-
sky normal form together with R, we might not be able to
find suitable path restriction to obtain the same language.
On the other hand, the derivation trees of tree controlled
grammars that generates their languages under n-path
control by a linear language are constructed exactly as in
context-free grammars and, in addition, we have to check
some of their paths. Thus, there is actually great possi-
bility to use well-known parsing methods for context-free
languages to construct the derivation trees and to check
their paths. However, in this viewpoint, n-path tree con-
trolled grammars seems to be a quite fragile formalism
since it requires a context-free grammar to have a pro-
duction with at least n nonterminals on the right-hand
side which ensures the division of n paths in a common
node. Moreover, it means that any attempt to use a pars-
ing method that transforms a context-free grammar into
Chomsky normal form will basically destroy any path re-
striction with n ≥ 3. Moreover, several nice properties of
context-free grammars have been lost—e.g., decomposi-
tion based on pumping lemma for linear languages is po-
tentially ambiguous and thus, the membership problem
for i-n-path-TC, i ∈ {I, II, III, IV, V}, is potentially
ambiguous also.

There are still many questions to be answered, namely
the power of grammars with path or paths controlled non-
regularly, further closure properties, decision properties,
etc. However, there are several other more general vari-
ants of path-based restriction. Indeed, a modification of
the formalism such that the paths do not have to be di-
vided in a common node of a derivation tree, or a variant
where a path in a tree does not have to start in the root
and end in a leaf of the tree have not been investigated
yet.
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[10] J. Dassow and Gh. Păun. Regulated Rewriting in Formal
Language Theory. Springer, 1989.

[11] J. Dassow, R. Stiebe, and B. Truthe. Two collapsing hierarchies of
subregularly tree controlled languages. Theoretical Computer
Science, 410:11, 2009.

[12] J. Dassow and B. Truthe. On two hierarchies of subregularly tree
controlled languages. In 10th International Workshop on
Descriptional Complexity of Formal Systems, DCFS 2008,
Charlottetown, Prince Edward Island, Canada, July 16-18, 2008.

[13] J. Dassow and B. Truthe. Subregularly tree controlled grammars
and languages. In Automata and Formal Languages - 12th
International Conference AFL 2008, Balatonfured, 2008.

[14] I. Friš. Grammars with partial ordering of the rules. Information
and Control, 12:11, 1968.

[15] J. Higginbotham. English is not a context-free language.
Linguistic Inquiry, 15:10, 1984.

[16] A. K. Joshi. Tree adjoining grammars: How much
context-sensitivity is required to provide reasonable structural
descriptions. Technical report, University of Pennsylvania, 1985.

[17] J. Koutný. Regular paths in derivation trees of context-free
grammars. In Proceedings of the 15th Conference STUDENT
EEICT 2009 Volume 4, 2009.

[18] J. Koutný. On n-path-controlled grammars. In Proceedings of the
16th Conference STUDENT EEICT 2010 Volume 5, 2010.

[19] J. Koutný. Syntax analysis of tree-controlled languages. In
Proceedings of the 17th Conference STUDENT EEICT 2011
Volume 3, 2011.

[20] J. Koutný. On path-controlled grammars and pseudoknots. In
Proceedings of the 18th Conference STUDENT EEICT 2012
Volume 3, 2012.
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