
A Dynamic Software Evolution by Metamodel Change

Michal Vagač
∗

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of Košice
Letná 9, 042 00 Košice, Slovakia
michal.vagac@gmail.com

Abstract
Every long-time running software system is sooner or later
subject of a change. The most common reasons are dif-
ferent requests for a bug fixing or adding a new func-
tionality. Software maintenance forms bigger part of soft-
ware’s lifetime. Before applying a change, it is essential
to correctly understand current state of affected system.
Without all relevant information about both – system as
whole and implementation details, a change can intro-
duce new bugs or even break functionality of the system.
In the paper we present contribution to program com-
prehension and following program change. Our method
utilizes metalevel architectures to separate legacy appli-
cation from evolution tool. The tool, placed in metalevel,
uses aspect-oriented techniques to introduce a new code in
the base level legacy application. This code manages ca-
sual connection between base level and metamodel, which
is automatically created in metalevel. According to the
base level program behavior, the metamodel is created
and/or updated. Depending on the metamodel change,
the base level program is extended with code which affects
its functionality. Since the metamodel describes related
implementation in higher level of abstraction, the method
improves program comprehension and simplifies change.

Categories and Subject Descriptors
D.1.5 [Software Engineering]: Object-oriented
Programming; D.2.3 [Software Engineering]: Coding
Tools and Techniques—Object-oriented programming ;
D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement—Restructuring, reverse engi-
neering, and reengineering

∗Recommended by thesis supervisor: Prof. Ján Kollár.
Defended at Faculty of Electrical Engineering and Infor-
matics, Technical University of Košice on September 29,
2011.

c⃝ Copyright 2011. All rights reserved. Permission to make digital
or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies show this notice on
the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy other-
wise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from STU Press,
Vazovova 5, 811 07 Bratislava, Slovakia.
Vagač, M. A Dynamic Software Evolution by Metamodel Change. In-
formation Sciences and Technologies Bulletin of the ACM Slovakia,
Vol. 3, No. 3 (2011) 36-43

Keywords
Aspect-oriented programming, metalevel architecture, me-
taprograming, program comprehension, software evolu-
tion, software change

1. Introduction
Information technologies influence many aspects of our
lives. Many fields of society rely on computers and soft-
ware they are running. None software is perfect and
sooner or later there are requirements for its change. The
most common reasons are different kinds of bug fixing or
adding a new functionality. Very often software system
models real world problem; since real world also changes,
there is a demand to reflect these changes in correspond-
ing software system. It is more common to change existing
system than to create a new one. Software maintenance
forms about 60-90% of its lifetime [5, 4].

According to mentioned facts, a software maintenance be-
come important research field. All improvements in soft-
ware change influences time required to maintenance (and
therefore also overall cost). Before applying a change, it is
required to identify code affected by the change. It is get-
ting more difficult as software systems continue to grow.
The problem is even more serious because of fluctuation
of developers. Program comprehension is a prerequisite
for program maintenance.

While reading and understanding a program code, a de-
veloper gains new knowledge. This knowledge can be
described as a sequence of certain knowledge domains,
where solved problem is on one side, and program imple-
mentation solving the problem is on the other side [2].
Knowledge domains on one side are human related, on
the other side are computer related. Thus the way of ex-
pression is different – on one side it is freely formed, while
on the other side it is strictly qualified. During program
comprehension, it is required to find associations between
both these ends. Relation between two neighbor domains
must not be necessarily 1:1 – for example an operation
in an algorithm domain can be described by sequence of
statements in programming language domain. Different
domains describe solved problem in different levels of ab-
straction. A person understands a program, when he/she
is able to explain the program and its relationships to its
application domain in terms that are qualitatively differ-
ent from the tokens used to construct the source code of
the program [1].

In the most of cases, applying a change means identi-
fying relevant fragment of source code, changing source



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 3, No. 3 (2011) 36-43 37

code, shutting down running system and finally replac-
ing old version with a new one. Better approach would
be to have a general technique monitoring running sys-
tem. According to collected information presented to a
user, it would be possible to apply modification without
stopping the system. A new version of the system would
be again monitored (and later again modified) using the
same general technique.

In the paper we present a contribution in the field of pro-
gram comprehension and evolution. The major goal was
to find a way to allow automatic mapping between differ-
ent levels of abstraction of selected program feature. This
can be described by two main goals:

• Mapping information from implementation level to
a metamodel created in higher level of abstraction.

• Reflecting metamodel changes as modifications in
implementation level.

These two levels – implementation level and metamodel
in metalevel – must be casually connected. Metamodel
in metalevel must reflect actual state of implementation
level and vice-versa – all changes in metamodel must be
automatically reflected in implementation level.

2. Improving program change
Applying program change requires far more activities than
program code modification. Usually a change request is
described in terms related to problem domain. Before
code modifications, an actor must understand problem
domain (to qualify change impact on other parts in prob-
lem domain). Then relations between problem domain
and program code must be found. To be able to find
these relations, an actor must be familiar with used pro-
gramming languages. To understand how the change will
affect running system, also runtime environment must be
understood. As a result from stated, a program change
heavily depends on knowledge in different areas – pro-
gramming techniques on one side and problem domain on
the other. The most of these prerequirements depends on
the actor of change – mostly on his/hers knowledge and
experiences. To improve possibilities of program change,
it is needed to move some of these responsibilities from a
user (developer) to a computer.

Process of identifying fragments of program code related
to known functionality of program is known as feature or
concept location [11]. Feature (or concept) can be defined
as cohesive set of functionality of the system [10]. Each
feature represents a well understood abstraction of a sys-
tem’s problem domain [9]. This term is situated in higher
level of abstraction than source code. During program
execution it exists as a collaboration of objects, which
are exchanging messages to achieve a specific goal. The
main difference between concepts and features is, that the
user can exercise the latter (hence the notion of concept
is more general than the notion of feature) [6]. Later in
this paper we will use only term “concept”.

Finding relations between concepts and program code takes
important part in overall program comprehension. The
task is to identify mappings between domain level con-
cepts and their implementations in source code [7]. The

input of the mapping is the maintenance request, ex-
pressed usually in natural language and using the do-
main level terminology. The output of the mapping is
a set of components that implement the concept [3]. The
input and output of location process belong to differ-
ent levels of abstraction (domain level vs implementation
level). To make the translation from one level to an-
other possible, extensive knowledge is required (problem
domain, programming techniques, algorithms, data struc-
tures, etc.). Since concepts are not explicitly represented
in source code, the concepts identification is a difficult
task. Concept location directly supports software main-
tenance.

All proposed solutions of concept location are at most
semi-automatic. The main reasons are missing link be-
tween different levels of abstraction (concepts are not ex-
plicitly represented in a program code) and demand on
extensive knowledge base (which is provided by human
user). Semi-automated tool ability of searching and ana-
lyzing subject system code is combined with user’s know-
ledge (let’s name this knowledge as knowledge base).

In this work, we will focus on object-oriented program-
ming. A program developed in object-oriented language
is typically defined by group of classes and their instances
– objects. Objects communicate to each other by send-
ing messages. Relationships between classes and objects
are defined by program code. Let’s define V as set of all
existing classes (1) and P as a set of classes used in a
program (2).

V = {v1, v2, . . . , vn} (1)

P = {p1, p2, . . . , pn}, P ⊂ V (2)

To understand an object-oriented program, a developer
has to read used classes and understand their relations
and meanings. It is essential to move implementation
level knowledge to higher level of abstraction. As men-
tioned above, to make the translation from one level to
another, extensive knowledge – a knowledge base – is re-
quired. If the program is composed of classes present in
the knowledge base, a user can read and understand the
program. If there are unknown classes (not present in the
knowledge base), a user have to study these classes (and
complete his/her knowledge base). According to all these
information (usage of classes and their meanings), it is
possible to describe a problem in terms in higher level of
abstraction than is implementation level.

Automatic creation of concept representation in higher
level of abstraction than concept implementation requires
both – information about way of using different classes,
and also meaning of these classes. A program comprehen-
sion with help of semi-automated tool for concept location
is accomplished in following steps:

1. Defining search query or execution test case (both
related to located concept and utilizing developer’s
knowledge base).

2. Using the query to search source code or executing
the test case.



38 Vagač, M.: A Dynamic Software Evolution by Metamodel Change

3. According to developer’s knowledge base, deciding,
if the results are satisfactory or not. If not, re-
peating from first step; if yes, getting a mapping
from concept to its implementation (mapping be-
tween different levels of abstractions).

As can be seen from previous steps, the knowledge base is
essential part of program comprehension. This part is also
the most problematic (from automation point of view). It
is too general to be completely provided by a computer.
Also there is always possibility to define new classes – so
knowledge base cannot contain all possible information.

However, creating software systems is rarely solely defin-
ing new classes. Significant part of many software systems
consists of using existing libraries, or reusing other kind
of code (maybe created in previous projects). Therefore,
defining a knowledge base may help with software com-
prehension and later modification. The knowledge base
for at least limited group of known classes could allow to
automatically create higher level of abstraction of usage
of these classes.

Let’s define K as a set of known classes (with known
name and known meaning). K is a subset of V (3). Let’s
define K′ as a set of known classes, which are used in the
program (4).

K = {k1, k2, . . . , kn},K ⊂ V (3)

K′ = {k′
1, k

′
2, . . . , k

′
n},K′ = P ∩K (4)

Let’s define aspect of the program as a group of known
classes used in the program which relates to one logical
part (from higher level abstraction point of view). Aspect
of the program is subset of program’s concepts, since it
contains only concepts based on known classes. Aspect
of the system is a logical part of the system (for exam-
ple network communication, file system operations, etc)
which is defined by known classes. Since the program may
contain several aspects, A is subset of K′ (5).

A = {a1, a2, . . . , an}, A ⊂ K′ (5)

By defining a knowledge base for known classes and by
analyzing program for the way of using these classes, let’s
define a function f , which projects aspect of the program
on model M , which is in higher level of abstraction than
implementation level (Fig. 1, equation 6).

M = f(A) (6)

Same way it is possible to define function g, which applies
all model M changes to classes from set A (Fig. 2).

3. System Evolution by Metamodel Change
In our method, one part of the system will reason about
the other part. We decided to use properties of me-
talevel architectures, where one layer is subject of an-
other layer. A metalevel controls, handles, or describes

Figure 1: Object-oriented program using classes
pi and known classes ki and ai. By examining the
way of use of classes ai it is possible to create
model M in higher level of abstraction.

Figure 2: Object-oriented program using classes
pi and known classes ki and ai. Changes in meta-
model M are reflected in implementation of classes
ai.

a base level. The term meta in general express infor-
mation about information. Metaprogramming relates to
programs, which manipulates other programs. Metale-
vel contains data which are representing related part of
base level. If this representation always correspond to
real state of base level, we can say that base level and
metalevel are casually connected.

3.1 Automatic Metamodel Creation
In our method, the base level system of metalevel archi-
tecture will be represented by a legacy application. In-
formation gathered by monitoring this base level system
will be used to create a metamodel, which will be placed
in metalevel (Fig. 3). A Metamodel presents identified
concept of software system. Since metamodel usually de-
scribes more than one object in base level (usually it will
contain several objects and relations between them), we
decided to define a new term of metamodel instead of us-
ing a term metaobject. As follows, it is possible to define
terms metamodel operations – operations supported by
metamodel, and metamodel protocol – interface allowing
to work with metamodel (consists of metamodel opera-
tions).

To create a metamodel, it is necessary to monitor base
level system to find all known classes and to resolve their
relationships and the way of their usage. A technique is
required, which allows to watch and according to needs
supplement existing code.

To extend base level application with analysis code we de-
cided to use techniques of aspect-oriented programming
(AOP). Aspect-oriented programming allowed modular-
ization of crosscutting concerns. Besides this property,



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 3, No. 3 (2011) 36-43 39

Figure 3: Base level and metalevel. Metamodel of
usage of known classes is placed in metalevel.

Figure 4: Metamodel creation using aspect-
oriented technique. Usage of known classes are
monitored in running program. The result infor-
mation is used to build metamodel.

AOP allowed also extending existing code with a new
functionality [8]. It is even possible to add a new func-
tionality without access to source code.

With a help of aspect-oriented programming, the base
system is extended with a new code, which has access
to internal structures of the base system. While running
the system, this code is gathering information about the
system and on the basis of these information it is possible
to build metamodel of specified concept of the base system
(Fig. 4, 5).

Metamodel represents known state of selected concept of
the base level system. Information about implementa-
tion in combination with knowledge base allows to create
metamodel which describes the concept in higher level of
abstraction than level of implementation. Created meta-
model can be presented to user, who will later use it when
applying software change. Metamodel contains only ab-
stracted information about selected concept, avoiding im-
plementation details.

3.2 Metamodel Change Reflection
Second part of described method is automatic change re-
flection. It is possible to affect the metamodel using meta-
model operations from metamodel protocol. After invok-
ing a metamodel operation, this will affect the metamodel,
and this must be automatically reflected in base level sys-
tem implementation (Fig. 6).

Figure 5: Base level system is enhanced with code
for dynamic analysis. The results from this ana-
lysis is used to build metamodel in metalevel.

Figure 6: After the metamodel change, this
change is automatically reflected in base level sys-
tem.

Figure 7: Original sequence of statements a) is
adviced with new code b). This code avoids state-
ment Sn and instead uses new statement S′

n



40 Vagač, M.: A Dynamic Software Evolution by Metamodel Change

Base level implementation must be changed automatically
by metasystem. The metasystem can realize the change
according to information from knowledge base. Chang-
ing a general running program is a difficult task. Among
other things, the biggest challenges are handling of active
threads and transfer of program state. Replacing existing
class with another one can break functionality of original
program.

Proposed method uses an aspect-oriented technique also
for application of change. With help of adding a new
code to existing application, it is possible to use around
advice to avoid execution of selected parts of original code.
Instead of original code, it is possible to get executed new
code implementing the change (Fig. 7). This way it is
possible to apply certain group of changes without need
of solving problems related to general dynamic software
change.

The other possibility of changing behavior and proper-
ties of running object-oriented system is to change the
system’s object model. Access to system’s internal struc-
tures makes it possible to use also this possibility. There-
fore the task of the base level monitoring subsystem will
be also to gather all needed information about internal
structure of the system.

After changing the metamodel, change aspects are used
to reflect the change in the base level application. The
change is realized with help of around advice in combina-
tion with object model modifications.

3.3 Knowledge base
Essential part of the whole method is usage of knowledge
base. Both described functions f and g uses the know-
ledge base to make transformation from one level of ab-
straction to another. The main task of the knowledge base
is to replace a developer’s knowledge during this transfor-
mation between different levels of abstractions.

The knowledge base must contain following information
for each supported concept:

• Implementation – describes the way of implementa-
tion of the concept in the level of base system im-
plementation. This information is used for tracking
down the current state of the concept.

• Model – describes how the concept will be modeled
in a metamodel (in higher level of abstraction).

• Change – describes how to reflect metamodel changes
(in reaction on invocations of metamodel operations)
in base (implementation) level.

Knowledge base will be manually filled with transforma-
tion functions, which will be individually prepared for
each supported concept. Because of importance of know-
ledge base for the method, a quality of method will depend
on size and quality of knowledge base.

3.4 Casual connection between base level and meta-
level

Casual connection is a responsibility of aspect-oriented
advices added to base level and the metasystem. From
one point of view, a task of AOP advices is to gather all

information about implementation of the concept in the
base level. From this information, a metamodel is created
(or updated).

When changing the metamodel, all modifications must be
automatically reflected in the base level system. This will
be done again with use of aspect-oriented programming
and access to internal object structure of base level appli-
cation.

4. Experiment of Metamodel Changes
Experiment based on described method consists of two
parts – base level application and completely indepen-
dent metasystem. Both levels were developed using Java
programming language.

Base level is presented by simple users management appli-
cation. The application is controlled via standard graphi-
cal user interface. Besides standard management func-
tions, the application allows to import list of users from
external application.

Fig. 8 presents UML sequence diagram of process of im-
porting users. The diagram was generated by Eclipse’s
Test & Performance Tools Platform (TPTP) Project. Af-
ter reading data from network, these are parsed using in-
stance of java.util.Scanner class. Each record occupies
one line and consists of two values – user login (of type
String) and user type (of type Integer).

Using the tool placed in metalevel, it is possible to au-
tomatically create metamodels of this network communi-
cation. First metamodel represents described format of
communication (Fig. 9). To built this metamodel, the
knowledge base had to be filled with details about using
of class java.util.Scanner and the way of modeling it. In
this case, it was enough to focus on context of invocations
of methods hasNext, next, nextInt, etc.

Supported metamodel operations were adding new data-
type and removing existing datatype. After change in
communication format (required from the other peer),
it is possible to adjust communication format of base
level application. This can be simply done using pro-
vided metamodel operations. After metamodel change,
this change is automatically (during runtime) reflected in
the base level application – consequently new communi-
cation format is supported.

Second metamodel presents details about the way of com-
munication (Fig. 10). The knowledge base was filled with
information about different extensions of java.io.InputStream
abstract class. Metamodel describes chain of instances
of these classes used during communication. Metamodel
operations allow adding new instances into this chain.
This way it was possible to add new properties of com-
munication, such as compression or encryption.

The last presented metamodel describes dialog flow within
the application as a graph of states connected by tran-
sitions (Fig. 11). Transitions are presented as events
invoked by button components. States describes visited
dialogs of the application. After button event invocation,
a dialog creation (or focus) is registered to record a tran-
sition to a new state. In this example, it was possible to
remove states of the graph. After removing a state, com-
ponent executing the transition to the state is removed.



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 3, No. 3 (2011) 36-43 41

Figure 8: Sequence diagram of import users process.

Figure 9: a) Metamodel of used format of communication. b) Metamodel after change – adding two new
datatypes.



42 Vagač, M.: A Dynamic Software Evolution by Metamodel Change

Figure 10: a) Metamodel of used way of communication. b) Metamodel after change – adding gzip
compression.

Figure 11: Metamodel of dialog flow.

Presented experiments used the knowledge base filled with
few concepts implemented in Java Class Library. To model
all possibilities of using this library is too complex. In
real world projects, it is common to reuse huge amount of
code – it will be helpful to prepare knowledge base for this
reusable code, in order to improve its later comprehension
and modifications.

5. Conclusions
The aim of our thesis was to contribute to the field of
a program comprehension and evolution. We identified
transition between different levels of abstraction as a way
to improve possibilities in this field.

Our method allows automatic metamodel creation based
on predefined knowledge base containing details about
implementation and modeling. Based on this informa-
tion, base level application is extended with a new code
which is monitoring way of use of known classes. Ex-
tension with a new code is made possible using aspect-
oriented techniques. Added code automatically tracks
down all information about monitored concept implemen-
tation. According to this information, a metamodel rep-
resenting concept is created in metalevel. The metamodel
is automatically created in higher level of abstraction than
implementation.

The knowledge base contains also information needed to
reflect metamodel changes back in implementation level.
After the metamodel change, second type of AOP ad-
vice is used to automatically reflect changes in base level
application. The change is mostly implemented by AOP
around advice, which allows to make execution of original
code conditional. When needed, an original code is only
extended, when needed it can be completely avoided.

Described experiment contains knowledge base filled with
few concepts implemented in Java Class Library. The ad-
vantage of selection of these concepts is ability of using
this knowledge base for any Java application (using com-

patible version of the library). The disadvantage is the
complexity of the standard class library. A difficulty of
projection between implementation level and metamodel
in higher level of abstraction depends on specific concept.

Base level application needs no information about meta-
level. It can be developed as a simple standalone applica-
tion – all information related to metamodel creation are
placed in metalevel. The presented tool allows applying
changes during system runtime – there is no need to stop
the base level application. Created metamodels describe
only selected concept and hide implementation details,
which simplifies its comprehension and modification.

Acknowledgements.

This work was supported by Project VEGANo. 1/0015/10
Principles and methods of semantic enrichment and adap-
tation of knowledge-based languages for automatic soft-
ware development

References
[1] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster. Program

understanding and the concept assignment problem. Commun.
ACM, 37:72–82, May 1994.

[2] R. Brooks. Using a behavioral theory of program comprehension
in software engineering. In Proceedings of the 3rd international
conference on Software engineering, ICSE ’78, pages 196–201,
Piscataway, NJ, USA, 1978. IEEE Press.

[3] K. Chen and V. Rajlich. Case study of feature location using
dependence graph. In Proceedings of the 8th International
Workshop on Program Comprehension, IWPC ’00, pages 241–,
Washington, DC, USA, 2000. IEEE Computer Society.

[4] L. Erlikh. Leveraging legacy system dollars for e-business. IT
Professional, 2:17–23, May 2000.

[5] M. M. Lehman, J. F. Ramil, and G. Kahen. A paradigm for the
behavioural modelling of software processes using system
dynamics. Technical report 2001/8, Imperial College, Department
of Computing, London, United Kingdom, September 2001.

[6] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich. Feature
location via information retrieval based filtering of a single



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 3, No. 3 (2011) 36-43 43

scenario execution trace. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software
engineering, ASE ’07, pages 234–243, New York, NY, USA,
2007. ACM.

[7] A. Olszak and B. N. Jørgensen. Remodularizing java programs for
comprehension of features. In Proceedings of the First
International Workshop on Feature-Oriented Software
Development, FOSD ’09, pages 19–26, New York, NY, USA,
2009. ACM.

[8] M. Oriol, W. Cazzola, S. Chiba, and G. Saake. Object-oriented
technology. ecoop 2008 workshop reader. RAM-SE’08, chapter
Getting Farther on Software Evolution via AOP and Reflection,
pages 63–69. Springer-Verlag, Berlin, Heidelberg, 2009.

[9] D. Röthlisberger, O. Greevy, and O. Nierstrasz. Feature driven
browsing. In Proceedings of the 2007 international conference on
Dynamic languages: in conjunction with the 15th International
Smalltalk Joint Conference 2007, ICDL ’07, pages 79–100, New
York, NY, USA, 2007. ACM.

[10] C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf. A
conceptual basis for feature engineering. J. Syst. Softw., 49:3–15,
December 1999.

[11] N. Wilde and M. C. Scully. Software reconnaissance: mapping
program features to code. Journal of Software Maintenance,
7:49–62, January 1995.

Selected Papers by the Author
M. Forgáč, M. Vagač. Transformation of Functionality with

Utilization of Metaprogramming and Reflection. In Proceedings
of the Eighth Scientific Conference of Young Researchers, Košice:
Faculty of Electrical Engineering and Informatics of the
Technical University of Košice, Košice, Slovakia, May 28, 2008,
pp. 95–97, ISBN 978-80-553-0036-8.

M. Vagač, M. Forgáč. Aspects Mining by MetaLevel Construction. In
Proceedings of the Sixth International Symposium on Applied
Machine Intelligence and Informatics, Košice – Herl’any: Faculty
of Electrical Engineering and Informatics of the Technical
University of Košice, Košice, Slovakia, 2008, pp. 151–155,
ISBN 978-1-4244-2106-0.

M. Vagač. Application Properties Abstraction Using AOP. In
Proceedings of CSE 2008 International Scientific Conference on
Computer Science and Engineering, High Tatras – Stará Lesná:
Faculty of Electrical Engineering and Informatics of the
Technical University of Košice, Košice, Slovakia, 2008, pp.
141–146, ISBN 978-80-8086-092-9.

J. Kollár, J. Porub an, P. Václavík, M. Forgáč, M. Sabo, L’.
Wassermann, F. Mrázik, M. Vagač, P. Klobušník. Software
Evolution based on Software Language Engineering. Computer
Science and Technology Research Survey, Košice, elfa, s.r.o.,
2008, 3, pp. 25–30, ISBN 978-80-8086-100-1.

M. Vagač, J. Kollár. System Evolution by Metalevel Modification. In
Proceedings of the 10th International Conference on Engineering
of Modern Electric Systems EMES’09, Oradea, Faculty of
Electrical Engineering and Information Technology of the
University of Oradea, Oradea, Romania, 2009, Vol.: 2, Issue 1,
pp. 71–74, ISSN 18446043.

M. Vagač, J. Siláči, J. Kollár. Metalevel Construction Using AOP. In
Proceedings of the Tenth International Conference on
Informatics – INFORMATICS 2009, Košice – Herl’any: Slovak
Society for Applied Cybernetics and Informatics, Faculty of
Electrical Engineering and Informatics of the Technical
University of Košice, Košice, Slovakia, November 2009, pp.
178–183, ISBN 978-80-8086-126-1.

J. Kollár, L’. Wassermann, V. Vranič, M. Vagač. Reducing Structural
Complexity of Software by Data Streams. In INFOCOMP -
Journal of Computer Science, 8, 4, 2009, pp. 11–20,
ISSN 1807-4545.

M. Vagač. System Aspect Mining from Java Library. In Eleventh
Scientific Conference of Young Researchers, Košice: Faculty of
Electrical Engineering and Informatics of the Technical
University of Košice, Košice, Slovakia, Accepted.

M. Vagač, J. Kollár. Improving Program Comprehension by
Automatic Metamodel Abstraction. In Computer Science and
Information Systems, Accepted.


