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Abstract
The stability and convergence of fundamental numeri-
cal methods for solving ordinary differential equations
are presented. These include one-step methods such as
the classical Euler method, Runge–Kutta methods and
the less well known but fast and accurate Taylor series
method. We also consider the generalization to multistep
methods such as Adams methods and their implementa-
tion as predictor–corrector pairs. Furthermore we con-
sider the generalization to multiderivative methods such
as Obreshkov method. There is always a choice in predi-
ctor-corrector pairs of the so-called mode of the method
and in this thesis both PEC and PECE modes are con-
sidered.

The aim of the paper is the use of a special fourth or-
der method consisting of a two-step predictor followed by
an one-step corrector, each using second derivative for-
mulae and the convergence and stability analysis for the
new method with constant stepsize for various problems
as well as to investigate and to compare the convergence
and stability analysis for selected numerical methods. Ex-
periments for linear and non-linear problems and the com-
parison with classical methods are presented.
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1. Introduction
Universal computational systems and equipments solve
these kinds of special algorithms and problems in less
shorter time that in former centuries. One of these prob-
lems is the numerical solution of differential equations.
Each simulation system includes different type of numer-
ical computations. To summarize numerical methods is
very demanding task in terms of extensiveness. There-
fore the thesis is focused on non-stiff problems described
by ordinary differential equations and their solutions us-
ing numerical methods.

Classic application of differential equations is found in
many areas of science and technology. They can be used
for modelling of physical, technical or biological processes
such as in the study of an electric circuit consisting of
a resistor, an inductor and a capacitor driven by an elec-
tromotive force, in gravitational equilibrium of a star,
chemical reactions kinetic, in the psychology, in models
of the learning of a task involves the equation, in vibrat-
ing strings and propagation of waves, etc. [15, 21]. Main
questions of modern technology are how to increase the
accuracy of calculations considering short computational
time, how to decrease necessary mathematical operations
and all these questions have many aspects and criterion,
which we need to explore to get the suitable answer.

2. Ordinary differential equations and one-step
methods

Ordinary differential equation (ODE) of first order ob-
tains a single independent variable and one or more its
derivatives with respect to that variable [3]. The equa-
tion is given in the form

y′(x) =f(x, y(x)), (1)

y(x0) =y0, (2)

where y′(x) = dy
dx

, x is independent variable, y is de-
pendent variable. A function y(x) is called a solution of
equation (1) and the initial value (2) is given.

A second order ODE for y is, under mild assumptions for
(1) together with (2), given in the form

y′′ = f(x, y, y′), (3)

with two free parameters which represent two uniquely
determined initial values

y(x0) = y0, y′(x0) = y′
0.
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Generally, an order n ODE in x with y(n) has the explicit
form

y(n) = f(x, y, y′, · · · , y(n−1)), (4)

there is a unique solution with n initial values

y(x0) = y0, y′(x0) = y′
0, · · · , y(n−1)(x0) = y

(n−1)
0 . (5)

To solve the ordinary differential equations we need to ask
how we can solve them. We are also interested in a ques-
tion if a differential equation has more than one solution.
Here we talk about the uniqueness of the solution. If it
has at least one solution we need to find a solution which
satisfies particular conditions. The answer testifies about
the existence of the solution. And we try to discover which
method should we use for solving the differential equation
to get the accurate result in a suitable time. There are
other fundamentals which need to be presented. But only
in a way to understand the described methods and gen-
eralizations. Generally, the mathematical background is
very extensive and described in many other books.

The convergence is the point of the interest together with
the stability. The attribute of convergence guaranties the
solution reaches the exact solution after few steps of cal-
culation. The stability and convergence determine the
consistency of the method [9].

2.1 Analytical solution and the example
Many of ordinary differential equations of arbitrary order
can be solved analytically. In the most of cases it is very
complicated and time-consuming problem.

Description of circuits using differential equations is very
convenient for the electrical circuits’ behavior analysis
[20]. Electrical circuits are described by differential equa-
tions for time-dependent elements (capacitors, inductances)
together with equations for linear and non-linear time-
independent elements (resistors, diodes and transistors).
Well-known Ohm’s law and Kirchhoff’s laws are part of
the electronic circuit description.

Assume the differential equation of second order (6) de-
scribing the electrical circuit in the figure 1. We assume
y′ = dy/dt for this example.

LCu′′
C +RCu′

C +uC = u, uC(0) = 0, u′
C(0) = 0 (6)

u

R

C

u C

u
R

L

uL

Figure 1: Electrical circuit with serial resistor, ca-
pacitor and inductor

The homogeneous equation is transferred to the charac-
teristic equation and solved as a quadratic equation in the
first step

LCλ2 +RCλ+ 1 =0

λ1,2 =−
RC ∓

√
(RC)2 − 4LC

2LC
.

There are three possible choices of the expected eigen-
values according to the value of the determinant D =
(RC)2 − 4LC

1. D > 0 −→ λ1 ̸= λ2 ∈ Re,

2. D = 0 −→ λ1 = λ2 ∈ Re,

3. D < 0 −→ λ1,2 = a± ib ∈ Im

and due to three possible homogeneous solutions yh = uCh

are expected

1. uCh = C1e
λ1t + C2e

λ2t,

2. uCh = eλt
(
C1t+ C2

)
,

3. uCh = eat
(
C1 cos(bt) + C2 sin(bt)

)
.

In this example we assume the multiple root (λ1 = λ2 =
−R/2L), so the expected solution for the circuit is

uCh = eλt(C1t+ C2), (7)

where C1 and C2 are unknown values.

As a second step it is necessary to determine the effect of
the right-hand side in the differential equation (6). Let
us say the electrical circuit has the alternating voltage
source and the corresponding equation is u = U0 sin(ωt).
We simplify the example for U0 = 1 V and the expected
particular equation yp = uCp looks like

uCp = A sin(ωt) +B cos(ωt). (8)

To determine the unknown values A and B we derive the
particular solution (8) up to the order the given differen-
tial equation

u′
Cp =Aω cos(ωt)−Bω sin(ωt)

u′′
Cp =−Aω2 sin(ωt)−Bω2 cos(ωt)

and replace uCp, u
′
Cp and u′′

Cp into the given differential
equation (6)

LCω2(−A sin(ωt)−B cos(ωt)) +RCω(A cos(ωt)

−B sin(ωt)) +A sin(ωt) +B cos(ωt) = sin(ωt)

(9)

Comparing functions sin(ωt), cos(ωt) on both sides of the
equation (9) we get

−ALCω2 −BRCω +A =1

−BLCω2 +ARCω +B =0

A =
1− LCω2

(LCω2)2 + (RCω)2

B =− RCω

(LCω2)2 + (RCω)2

In the third step we add both homogeneous and particular
parts together

uC =uCh + uCp

uC =e−
R
2L

t(C1t+ C2) +
(1− LCω2) sin(ωt)−RCω cos(ωt)

(LCω2)2 + (RCω)2

(10)
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To determine the unknown C1 and C2 we insert the initial
value uC(0) = 0 into (10)

C2 =
RCω

(LCω2)2 + (RCω)2

for inserting second initial value u′
c(0) = 0 we calculate

the derivative of the equation (10)

u′
C =− R

2L
e−

R
2L

t(C1t+ C2) + C1e
− R

2L
t+

ω(1− LCω2) cos(ωt) +RCω2 sin(ωt)

(LCω2)2 + (RCω)2
(11)

and the initial value u′
C(0) = 0 is now inserted in (11)

C1 =
R2Cω − 2Lω(1− LCω2)

2L
(
(LCω2)2 + (RCω)2

) (12)

The analytical solution uC of the differential equation of
second order (6) with multiple root for RLC circuit is
given by

uC =e−
R
2L

t

R2Cω − 2Lω(1− LCω2)

2L
(
(LCω2)2 + (RCω)2

) t
 (13)

+ e−
R
2L

t

(
RCω

(LCω2)2 + (RCω)2

)
+

(1− LCω2) sin(ωt)−RCω cos(ωt)

(LCω2)2 + (RCω)2
(14)

We set the special values of the circuit as

R = 20 Ω, L = 2.5 · 10−2 H, C = 5 · 10−5 F,

ω = 1000 rad/s, u = sin(ωt) V

we solve the equation (14) and we graphically represent
the analytical solution of uC in figure 2.

Figure 2: Voltage uC in RLC circuit - computed
from the analytical solution

2.2 Numerical solution
The second way to solve differential equations is the nu-
merical solution. The numerical solving is based on ap-
proximations and it includes many other aspects of cho-
sen numerical method such as initial conditions, genera-
tion and propagation errors, stability and convergence of
the method, a variable stepsize etc. By numerical solu-
tion of differential equation we mean a sequence of values
y(t0), y(t1), · · · , y(ti) for i = 0, 1, · · · , n.

From this part of the work numerical methods for the so-
lution of the initial value problem in ordinary differential

equations are evaluated and compared. An initial value
problem is specified as follows

y′(x) = f(y(x)), y(x0) = y0. (15)

There exist two main types of numerical methods, the first
types use for the next approximation yn only the current
already known approximation yn−1, we call them one-
step methods. The other ones called multistep methods
solve the next approximation using current and previous
approximations yn, yn−1, yn−2, ...

We proceed from introduction of chosen one-step methods
such as the simplest Euler method through generaliza-
tions to chosen multistep methods. These generalizations
are based on more computations in a step, use of more
previous values or higher derivatives.

2.3 Euler method
The simplest and the most analyzed numerical method for
solving ordinary differential equations is Euler method. It
is the simple recursion formula which studies the solution
for only certain values x = 0, h, 2h, · · · , where h is called
an integration step or a stepsize and assumes that dy/dx
is constant between points. The recursion formula is given
by

yn = yn−1 + hf(yn−1), y(0) = y0. (16)

The sequence of values starting from the initial value x0

is used for computation and stepsizes between each values
of sequence x1 − x0, x2 − x1, ... are denoted as h1, h2, ...,
the highest is denoted by h. For each value of n, each
approximation of yn is computed using a previous value
yn−1 which is exactly equal to y(xn−1). We see that the
quality of approximations of yn−1 depend on the magni-
tude of h.

The Euler method is based on a truncated Taylor series
expansion which implies the local truncation error ln (or
discretization error) of the method as a O(h2). The local
truncation error is an error committed by the method in
a single step when the values at the beginning of that
step are assumed to be exact. From this fact we can say,
that the Euler method is first order technique, generally
a method with local truncation error equals to O(hp+1) is
said to be of p-th order. At the n-step the error is defined
by

ln =y(xn−1 + h)− y(xn−1)− hf(xn−1, y(xn−1))

=y(xn−1) + hy′(xn−1) +
h2

2
y′′(xn−1 + θh)

− y(xn−1)− hy′(xn−1)

=
h2

2
y′′(xn−1 + θh), 0 < θ < 1.

The truncation error is different from the global error ϵn
[9], which is defined as

ϵn =y(xn−1 + h)− yn

=y(xn−1)− hf(xn−1, y(xn−1)) + ln

− yn−1 − hf(xn−1, yn−1)

=ϵn−1 − hf(xn−1, y(xn−1))− hf(xn−1, yn−1) + ln.
(17)

In the most cases, the exact solution is unknown and
hence the global error cannot be evaluated. Evaluations
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of errors are closely linked to a variable stepsize deter-
mination, but we will discuss it later. The magnitude of
stepsize is important for the convergence of the method.
A convergent numerical method is the one where the nu-
merically computed solution approaches the exact solu-
tion as the stepsize approaches 0. For problems with un-
known exact solution, we choose the solution obtained
with a sufficiently small time step as the ”exact” solution
to study the convergence characteristics. So taking the
norm of global error in (17) and applying the triangle in-
equality, the Lipschitz condition and the bound on the
local error, we get the first-order inequality

||ϵn|| = (1 + hL)||ϵn−1||+
Mh2

2
.

Since ϵ0 = 0, the inequality has solution given by

||ϵn|| ≤
Mh

2L
(1 + hL)n

where as n → ∞ and h → 0, we have ϵn → 0 and
yn → y(xn) for some M < ∞ that is the numerical so-
lution converges to the exact solution. Then we can say
that methods of order higher than one are also convergent
[10].

For the Euler methods there are stepsize limitations such
as to ensure numerical stability, reasonable required accu-
racy, also fast convergence behaviour. A bit of improve-
ment is given by implicit Euler method

yn = yn−1 + hf(yn), y(0) = y0 (18)

For better understanding of stepsize and convergence of
the method, have a look to a simple example also called
Dahlquist problem with known exact solution [11].

Consider a Dahlquist problem

y′ = qy, y(0) = 1 (19)

with known analytical solution given by y(x) = exp(qx).
In this case we choose constant q = 1.

To check the order of Euler method with the fixed step-
size, we determine the error each time for n steps and set
the stepsize such as h = (tmax − tmin)/n for different n
values as n = 10, 20, 40, · · · 10240, see table 1. We plot
the order graph with the log of stepsizes on the x-axis and
the log of absolute values of errors on the y-axis.

From now we will use the notation 1e−02, 1e−03, 1e−04,
· · · , 1e+03, 1e+04, · · · respectively for numbers 1 · 10−2,
1 · 10−3, 1 · 10−4, · · · , 1 · 103, 1 · 104, · · · respectively.

Errors give us an order illustrates the rate at which the nu-
merical error decreases with stepsize, see picture 3. Note
that the order plot is from now always a log-log plot be-
cause the size of the error spans orders of magnitude. The
slope of the error curve on a log-log plot gives the order
of accuracy of the method. If the slope is unity, the error
scales linearly with the stepsize. If the slope is two, then
the error scales as the square of the stepsize.

Checking the slope of lines through the points we can say
that the order of Euler method is 1. This means that
results are consistent with order 1. Generally holds, that
if the method has order p, the error for small h approxi-
mately satisfies an equation

E ≈ Chp (20)

assuming that E is the norm of the error and C is some
constant so that everything is scalar.

Table 1: Errors and the order of Euler method for
different fixed stepsizes

h err ratio
0.2 0.2299618

0.1 0.1245394
1.846

0.1·2−1 6.498412e-02
1.916

0.1·2−2 3.321799e-02
1.956

0.1·2−3 1.679689e-02
1.978

0.1·2−4 8.446252e-03
1.989

0.1·2−5 4.235185e-03
1.994

0.1·2−6 2.120621e-03
1.997

0.1·2−7 1.061069e-03
1.999

Figure 3: Order of Euler method for Dahlquist
problem

Knowing that the Euler method converges and the error
increases for increasing time over the tolerable limit, let us
study the behaviour of the method over extended interval
[11]. Assume the linear system of equations of constant
coefficients

y′(x) = My(x), (21)

where M is the constant matrix. This problem can be
transformed using a few assumptions according to [7] to
the simpler form

y′(x) = q(x) (22)

where z = hq with the exact solution yn+1 = exp(zn)y0
and z is a complex number. Using fixed stepsize it was
said that (1 + hq)n is an acceptable approximation to
exp(nhq), where both expressions as n → ∞ are bounded.
That also means that if the stability function defined as

R(z) =
yn+1

yn
(23)

meet the condition R(z) ≤ 1, then |1 + hq| is bounded
by 1. The set of values for the exact solution is bounded
in the non-positive half-plane z ∈ C : R(z) ≤ 0. For this
condition is the set of points for Euler method equals to
|1+ z| ≤ 1 (set of points is the closed disc in the complex
plane with the centre in -1 and radius of 1). This prop-
erty is also called boundedness. Property of converging
is less strict then the unify, the exact solution lays in the
negative left-plane z ∈ C : R(z) < 0, so the set of points
for Euler method lays in the open disc with the centre in
-1 and radius of 1. For Euler method and implicit Euler
method have been derived stability regions as follows

R(z) =
{ 1 + z, (Euler method)

1
1−z

. (implicit Euler method)
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Stability regions of both methods are plotted and colored
in figure 4.

Figure 4: Stability regions for Euler method

We say that the stability region is defined as a set of points
in the complex plane, z should stay in the disc for other
problems. It can be achieved only by reducing h. This
causes many limitations. For example to solve stiff prob-
lems with very negative eigenvalues it means to decrease
h so much that it makes explicit method unusable. If the
stability function has no poles in the left half-plane, this
means the stability region includes all zeros of the left
half-plane and the method is said to be A-stable. It also
holds that the magnitude |R(z)| must be bounded by 1
for z on the imaginary axes. A-stability is a very desir-
able property for any numerical algorithm, particularly if
initial value problems were to be stiff or stiff oscillatory
[16].

Another interesting way how to study the stability region
is using order stars technique [15], see colored regions in
figure 5. This property of multiplying the stability func-
tion by exp(−z) should make no difference in the charac-
teristic of the method stability. Notice the behaviour near
z = 0 and z = −1. For |Re(z)| large, the behaviour is ef-
fected by the exponential function, the behaviour around
zero is the same as for the absolute stability region and
the behaviour at z = −1 is determined by a pole. The
regions intersect with zero and Re(R(z) exp(−z)) positive
are called fingers. Regions with negative Re(R(z) exp(−z))
are known as dual fingers. Similar technique as order
stars is the order arrows. The technique of order arrows
is about to plot the paths in the complex plane where
ω(z) = exp(−z)R(z) is real and positive.

Figure 5: Order stars for explicit Euler method

The next generalization of the Euler method assumes in-
stead of computing f once in a step that the method com-
putes f two or more times with different arguments. This
approach defines an important class of one-step method
known as Runge-Kutta methods.

2.4 Runge–Kutta methods
Suppose we know y(xn) and we want to determine an
approximation yn+1 to y(xn + h). The idea behind the
Runge-Kutta methods is to compute the value of f(x, y)
at several conveniently chosen points near to the solution
in the interval (xn, xn + h) and to combine these values
in such a way as to get good accuracy in the computed
increment.

Generally, this important section of numerical methods
can be written in the form of equations such as

yn =yn−1 + h

s∑
j=1

bjFj ,

Yi =yn−1 + h

s∑
j<i

aijFj , (24)

where Fi = f(Yi) is evaluated by approximations yn to
y(xn) for i = 1, 2, · · · , s, constants bj , aij can be writ-
ten into table 2. Types of methods could be specified
by different values of those coefficients. The tableau was
defined by J. C. Butcher [6].

Table 2: Butcher tableau of Runge–Kutta meth-
ods

0
c2 a21

c3 a31 a32

...
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

To specify some types of the method, one needs to provide
the constant number s, which determines the number of
internal stages, and constants aij (for 1 ≤ j < i ≤ s),
constants bi (for i = 1, 2, · · · , s) and constants ci (for
i = 2, 3, · · · , s) [3].

The local truncation error of Runge–Kutta methods can-
not be worse than the Euler method from the view of
the consistency condition and it is O(h2). The consis-
tency condition guarantees that at least one independent
variable is computed correctly. Due to the dependency
of the local truncation error on constants aij and bi the
conditions for a given order accuracy are determined.

The main idea behind the order of each method is the
number of stages s required to achieve this order and the
number of computed free parameters for given number of
stages. The relationship between those numbers is given
by conditions, so-called order conditions. We can use the
approach of the rooted trees and apply it for the order
condition description for all classes of Runge–Kutta algo-
rithms [6].

To illustrate the analysis of the grown of numerical errors
in a computed solution to a differential equation, we con-
sider the equation (22) again as in Euler method stability
analysis. As we write hq = z the analysis generalizes in
the case of explicit Runge-Kutta methods to give a re-
sult yn computed after n steps from y(0) = 1. The result
is given by yn = r(z)n. The r is a particular polyno-
mial determined by the coefficients in the method. In the
case of implicit Runge-Kutta methods, r is not in general
a polynomial but a rational function.



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 3, No. 3 (2011) 26-35 31

A Runge-Kutta method is said to be A-stable if its stabil-
ity region contains C−, the non-positive half-plane. This
definition has been redefined in different ways during the
time. More requirements on the qualitative behaviour
of numerical solutions were proposed. Let us introduce
some of the requirements. One of them is that a method
to be such that |r(z)| ≤ 1 for all C− and in addition that
lim|z|→∞ |r(z)| = 0 and it is known as a L-stability. Quite
standard requirement of A-stability is that the stability
region include the set C(α) = z ∈ C : |arg(−z)| ≤ α and
the stability region contains some left half-plane together
with the intersection of the negative half-plane with some
open set containing the real axis. This properties was
named A(α)-stability (Widlund, 1967) and later named
as stiff stability (Gear, 1969) [14, 25].

The requirements which refers to the qualitative behaviour
of numerical solutions to certain non-linear problems are
given by B-stability (Butcher, 1975). The property says
that for two particular solutions to such a problem the dif-
ference between them is non-increasing and could be ap-
plied to numerical solution. This property can be consid-
ered also for non-autonomous differential equations and
the method preserves it is called BN -stable (Burrage and
Butcher, 1979) [4, 8].

Consider a Runge–Kutta method given by

Y1 = yn−1,

Y2 = yn−1 + ha21f(Y1),

· · ·
Ys = yn−1 + h(as1f(Y1) + as2f(Y2) + · · ·+ as,s−1f(Ys−1)),

yn = yn−1 + h(b1f(Y1) + b2f(Y2) + · · ·+ bsf(Ys))

using the Dahlquist problem (19), z = hq and s the num-
ber of stages. We rewrite it as

Y = yn−1e+ zAY,

yn = yn−1 + zbTY,

where e = [1, 1, · · · , 1]T , Y = [Y1, Y2, · · · , Ys]
T and bT =

[b1, b2, · · · , bs].

The polynomial r which determines the stability of the
method is given by

R(z) =
yn

yn−1
= 1 + zbT (y−1

n−1Y ).

Due to some assumptions [5], we find

R(z) = 1 + z +
z2

2!
+ · · ·+ zp

p!
+ cp+1z

p+1, (25)

A method is said to be A-stable if its stability function
is bounded by 1 in the left half-plane. It is said to be L-
stable if it is A-stable and R(∞) = 0. A method of order
p has a stability function with a series that agrees with
ez up to terms in hp [7]. Hence we obtain the stability
regions described in the table 3.

Table 3: Stability functions for Runge–Kutta
methods up to order 4

order R(z)
1 1 + z
2 1 + z + 1

2
z2

3 1 + z + 1
2
z2 + 1

6
z3

4 1 + z + 1
2
z2 + 1

6
z3 + 1

24
z4

2.5 Taylor series method
Substituting derivations and initial values into the for-
mula for the Taylor polynomial, we than obtain a rep-
resentation of the solution as a power series about the
initial point x0. This procedure, called the Taylor series
method, is illustrated of power series (26). The mathe-
matical background was widely described in the history
[1, 2, 19].

yn = yn−1 + hy′
n−1 +

h2

2!
y′′
n−1 + · · ·+ hp

p!
y
(p)
n−1 +O(hp+1)

(26)

The method has been implemented in simulators TKSL386,
TKSL/C (Kunovsky, 1991, 1998) with different approach
than the approach brought by Barton, Willers and Zahar
[1]. It uses so-called forming differential equations which
implement higher orders more effectively. The Taylor se-
ries method can be used for solving a large number of var-
ious problems and it has an automatic integration method
using Taylor series. It could be used for variable order;
the order p is set automatically using as many Taylor se-
ries terms for computing as needed to achieve the required
accuracy.

The absolute value of the relative error of the computa-
tion is the main criterion to chosen the order. Maximum
order of this method is computed up to 63 of Taylor series
terms. The advantage is in the speed of computation, that
is functions are generated by adding, multiplying and su-
perposing elementary functions. The disadvantage of the
method is the need to generate higher derivatives.

We again present the example of RLC electrical circuit
(14) as a first test problem to show the power of Tay-
lor series method. We focus on the numerical solution of
the circuit and we compare it with the analytical solu-
tion. We have same constants and we solve the circuit
numerically using differential equations. When we com-
pare the numerical solution uC to an analytical solution
uCanalyt we get very small numbers of the error around
values 10−17. Hence, the Taylor series method proves high
accuracy of calculation. For those interested in specific
equations TKSL/C source code is given in the Appendix
A.

It has been shown that generally the method is A-stable
[24]. Stability regions of Taylor series methods up to or-
der 4 are identical as stability regions of Runge–Kutta
methods up to order 4.

The next chapter provides the generalization in such a
way to bring more previous values such as the value yn
depends not only on yn−1 and f(yn−1) but also on yn−2

and f(yn−2), yn−3 and f(yn−3),...

3. Linear multistep methods
The linear multistep method is essentially a polynomial
interpolation procedure whereby the solution or its deriva-
tive is replaced by a polynomial of appropriate degree in
the independent variable x, whose derivative or integral
is readily computed. The linear multistep method for the
initial value problem is given by

yn =
k∑

i=1

αiyn−i + h
k∑

i=0

βif(yn−i, yn−i). (27)
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According to the coefficient b0 one separates methods
into Gear methods and Adams methods: explicit Adams–
Bashforth (b0 = 0) and implicit Adams–Moulton (b0 ̸= 0).

Adams–Bashforth method is an explicit multistep
method whence

p = k − 1, a1 = a2 = · · · = ak−1 = 0, b−1 = 0

defined by

yn = yn−1 + h(a1fn−1 + a2fn−2 + · · ·+ bkfn−k).

The coefficients ak (see Tab. ??) can be determined and
rewritten also by

j

p∑
i=0

(−i)j−1bi = 1, j = 1, · · · , k (28)

The Adams-Bashforth formula of order 1 for k = 1 yields
the (explicit) Euler method.

Adams–Moulton method is an implicit multistep
method whence

p = k − 2, a1 = a2 = . . . = ak−2 = 0

defined by

yn = yn−1 + h(b0fn + b1fn−1 + · · ·+ bk−1fn−k+1).

Similarly, coefficients are obtained for the highest order
possible. And however, the Adams-Moulton are implicit
methods, thus reach order p+1. The Adams-Moulton for-
mula of order 1 yields the (implicit) backward Euler inte-
gration method and the formula of order 2 yields method
known as the trapezoidal rule.

A comparison of coefficients of both methods reveals that
the coefficients of the implicit formula are smaller than
those of the corresponding explicit formulas. The smaller
coefficients lead to smaller local truncation errors and,
hence, to improved accuracy over the explicit Adams-
Bashforth methods [12].

A linear multistep method [α, β] is stable if the difference
equation (29) has only bounded solution. The difference
equation represents an one-dimensional problem to equa-
tion (27) with f(x, y) = 0 gives

yn = α1yn−1 + α2yn−2 + · · ·+ αkyn−k. (29)

A linear multistep method is said to be stable if all solu-
tion of the difference equation (29) are bounded as n →
∞. Let p(λ) be the corresponding characteristic polyno-
mial

p(λ) = λk − α1λ
k−1 − α2λ

k−2 − · · · − ak.

A method is said to satisfy the root condition if |λj | ≤ 1
for all j, and if |λi| is a repeated root then |λj | < 1. That
is, all roots must lie within the unit circle and those on
the boundary must be simple [7].

3.1 Predictor–corrector methods
Predictor–corrector methods constitute an important al-
gorithm in implementation of linear multistep methods
and the most successful codes for the solution of initial
value problems of ordinary differential equations. Briefly,
these methods are successful because they occur in natu-
rally arising families covering a range of orders, they have
reasonable stability properties, and they allow an easy
control via suitable stepsize or order changing policies

and techniques. The major advantage of the multistep
methods is that fewer functional evaluations are usually
required per integration step [13].

We obtain different types by combinations of explicit and
implicit methods. Usually the predictor is an Adams-
Bashforth formula and it predicts first approximation value
of the solution. The derivative evaluated from this ap-
proximation is used in Adams-Moulton corrector formula
in the next step. Apart from the better stability of the
predictor-corrector formulae over the explicit formulae,
the predictor-corrector formulae are generally more accu-
rate and provide reasonable and adequate error estimators
[12].

In the calculation of predictor-corrector pairs are three
stages:

1. Predict the starting value for the dependent variable
yn+k as y∗

n+k.

2. Evaluate the derivative at (xn+k, y
∗
n+k).

3. Correct the evaluated predicted value.

A combination of three stages is called PEC (predict–
evaluate–correct) mode. It is often more desirable in
terms of stability considerations to incorporate one addi-
tional function evaluation per integration step, thus calcu-
late the PECE (predict–evaluate–correct–evaluate) mode
[17]. Other options of repeating stages are possible but we
have in mind that it is generally considered that functional
evaluations are the most expensive part of the predictor–
corrector procedure.

The stability improvement is given by PECE mode. One
more evaluation on the end of each computational step
makes the stability region more wide [18]. Notice the dif-
ference in stability region for Adams-Bashforth method
order 2 (AB2) and Adams–Moulton method order 2 (AM2)
in PEC mode presented in picture 6 and stability region
of same methods orders 3 (AB3, AM3) in PECE mode in
picture 7.

Figure 6: Region of absolute stability - PEC

To obtain the General linear methods we have two op-
tions. We generalize Runge–Kutta methods in case of
using more previous values, or we generalize Linear mul-
tistep methods in case of using more stages in the calcu-
lation per step. So we have a range of possibilities from
1 input quantity, as in Runge–Kutta methods, to a large
number as in multistep methods, more in [5].
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Figure 7: Region of absolute stability - PECE

4. Predictor–corrector Obreshkov method
The main contribution of this thesis is to extend Adams
methods to higher derivative methods by using Obreshkov
quadrature formulae. We consider a two-step predictor
followed by a one-step corrector, in each case using second
derivative formulae. As a choice for predictor–corrector
pairs we consider both PEC and PECE methods.

We start with a generalization of Adams methods to sec-
ond derivative methods. We consider problems for which
it is efficient to calculate first and second derivatives at
any solution point. We denote first and second derivatives
by

y′(x) = f(x, y), y′′(x) = g(x, y).

At the start of the step we assume that we already have
computed values in previous points

yn−1, yn−2, · · · , yn−k,

obtained from the starting method. The question of start-
ing method will be discussed later. We also know from
the given problem first and second derivative values,

fn−1, fn−2, . . . , fn−k, gn−1, gn−2, . . . , gn−k,

which are given by fi = f(xi, yi), gi = g(xi, yi).

To implement the new method in predictor–corrector pairs
we consider using an explicit method for a predicted part
and using an implicit formula for a corrected part.

Formulae for f(x, y) and g(x, y) are available, hence the
Obreshkov method becomes available and we calculate the
coefficients for predictor and corrector equations using the
Lagrange interpolation formulae. With another restric-
tion of two-steps formulae, we replace the Lagrange inte-
gration polynomial by the Lagrange-Hermite integration
polynomial. Hence, we determine formulae of predictor
equation

y(xn) = yn−1−
1

2
hfn−1+

3

2
hfn−2+

17

12
h2gn−1+

7

12
h2gn−2

(30)
and of corrector equation

y(xn) = yn−1 +
1

2
hfn +

1

2
hfn−1 −

1

12
h2gn +

1

12
h2gn−1.

(31)

We assume the use of the variable stepsize for the new
method, thus we implement the new method in Nordsieck
representation. By procedure described in [23], we obtain

the algorithm of the new method such as

Yn = PYn−1 + δ


1
2
1
0
−1
− 1

2

+ ϵ


− 1

12
0
1
4
3
1
2

 , (32)

where it holds

δ =hf(Y ∗
n1

)− [0 1 2 3 4]Y ∗
n−1,

ϵ =h2g(Y ∗
n1

)− [0 0 1 3 6]Y ∗
n−1,

where Yn is an output vector in the Nordsieck represen-
tation, Yn−1 is an input vector in the Nordsieck represen-
tation, P is the Pascal matrix, the term f(Y ∗

n ) is the f -
function evaluation of predicted value Y ∗

n and Y ∗
n1

means
the first component of a predicted vector.

As a starting method can be used classical one-step meth-
ods such as Runge–Kutta method of order 4 or Adams-
Bashforth method of order 4, but it seems reasonable to
use the predictor–corrector Obreshkov method itself.

4.1 Order of the method
To check the order of the new method we show the sim-
plest Dahlquist problem (19) with constant q = 1. We
proceed uniformly as described previously in the section
2.3. We calculate the error each time for n steps with
h = (tmax − tmin)/n.

Checking the slope of line through points we say that
the order of new method (called vlgm and represented by
violet line in figure 8) is 4. For comparison there are also
displayed results for the same problem computed by Euler
method (red line), which is the method of order 1, and
Taylor series method of orders 2 (green line) and Taylor
series method of order 4 (blue line). The corresponding
errors for Euler method, Taylor series method of order
2 and of order 4 and for our method are determined in
table 4. The interesting fact is that Taylor series method
of order 4 is more precise than the classical Runge–Kutta
of order 4.

Table 4: Errors for Dahlquist problem of Taylor
series method and new method

h errTs4 errvlgm
0.1 2.084324e-06 1.147407e-05

0.1·2−1 1.358027e-07 7.462822e-07
0.1·2−2 8.666185e-09 4.757726e-08
0.1·2−3 5.473053e-10 3.003144e-09
0.1·2−4 3.438494e-11 1.886535e-10
0.1·2−5 2.155165e-12 1.187850e-11
0.1·2−6 1.350031e-13 6.847856e-13
0.1·2−7 4.884981e-15 4.279039e-14

Other two multistep methods were implemented and re-
sults for the problem were calculated for the comparison.
The new method is motivated by Adams methods so to
compare the new method with Adams method in PEC
mode is natural. Hence, we implemented and calculate
with Adams-Bashforth Adams-Moulton formulae of or-
der 4 used in PEC mode (called ABAM4PEC and illus-
trated only in picture). And the other method is Adams-
Bashforth method of order 4 (AdamBash4). Errors are
displayed in table 5 and corresponding slopes of orders are
plotted in the figure 9 for comparing those methods via
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Table 5: Errors for Dahlquist problem of RK4,
AB4 and new method vlgm

h errRK4 errAdamBash4 errvlgm
0.1 1.133156e-05 3.767292e-04 1.147407e-05

0.1·2−1 7.383001e-07 2.761708e-05 7.462822e-07
0.1·2−2 4.711429e-08 1.865007e-06 4.757726e-08
0.1·2−3 2.975458e-09 1.211015e-07 3.003144e-09
0.1·2−4 1.869447e-10 7.713870e-09 1.886535e-10
0.1·2−5 1.170353e-11 4.866960e-10 1.187850e-11
0.1·2−6 7.265299e-13 3.055334e-11 6.847856e-13
0.1·2−7 6.394885e-14 1.900702e-12 4.279039e-14

Figure 8: Errors and orders of different methods
for Dahlquist problem

positions of lines. Satisfying fact is that our new method
has comparable results with Runge–Kutta method of or-
der four and it is more accurate than Adams-Bashforth
Adams-Moulton formulae of order 4 used in PEC mode.

Figure 9: Errors and orders of four methods for
Dahlquist problem

4.2 PEC and PECE modes
We are concerned about the different modes of the method.
Our method is represented in a PEC mode. We discovered
that as we repeat the evaluate–correct step one more time
after one cycle of predict–evaluate–correct procedure, re-
sults will be improved in the accuracy point of view ac-
cording to experiments.

As we repeat steps 2. and 3. one more time and we call it

PECECE (or PE(CE)2) mode, results are still improved
according to a PEC mode, but they are slightly less accu-
rate than errors for a PECE mode. Those result were also
expected, this behaviour occurs in some problems even for
classical Adams methods in corresponding modes.

The Prothero–Robinson problem [22] was chosen for the
demonstration. Errors of PECE mode are smaller than
errors of PEC mode, see the table 6. Ratio numbers rep-
resent 2p with the order p of the new method in corre-
sponding mode.

Table 6: Errors for Prothero–Robinson problem
of our method in different modes

h errorPEC ratio errorPECE ratio
0.1 5.197512e-07 3.928242e-07

0.1·2−1 2.717284e-08
19.128

2.338723e-08
16.780

0.1·2−2 1.528272e-09
17.780

1.413994e-09
16.540

0.1·2−3 9.020651e-11
16.942

8.671031e-11
16.307

0.1·2−4 5.472844e-12
16.483

5.365375e-12
16.161

0.1·2−5 3.359535e-13
16.290

3.330669e-13
16.109

0.1·2−6 1.942890e-14
17.291

1.931788e-14
17.241

0.1·2−7 6.328271e-15
3.070

6.328271e-15
3.053

4.3 Stability
The stability analysis for two-derivative multistep method
is presented in this section. For plotting the stability
region we use predictor and corrector equations of our
method.

Figure 10: Stability regions of the new method in
PEC mode

Figure 11: Stability regions of the new method in
PECE mode
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It has been discovered that the size of stability region is
bigger for our method than the stability region of Adams-
Bashforth Adams-Moulton method of order 4. The same
characteristics holds for the PECE mode.

5. Conclusions
Convergence and stability analysis for the predictor–corrector
method in Obreshkov quadrature formulae with constant
stepsize for various problems have been shown as well as
the comparison between the new method and other se-
lected numerical methods. The method turned out to
be just as reliable as the traditional methods. The cost of
new method decreases with the complexity of the problem
and the accuracy is preserved. The higher order of new
method will be more accurate than the classical Adams
method.

The size of the stability region for the resulting algorithm
is still small, but the stability region is larger than com-
monly used methods such as Adams–Bashforth Adams–
Moulton method of order four in PEC mode or Adams–
Bashforth method of order 4. Hence, the new algorithm
may be of interest of applications where stability is a strong
limitation.
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Appendix
A. TKSL/C code
The code for RLC circuit for TKSL/C is presented here.

omega=1e+3;

R=20;

L=2.5e-2;

C=5e-5;

u=sin(omega*t);

% numerical solution

uC’=1/C*i &0;

i’ =1/L*uL &0;

uL =u-R*i-uC;

% analytical solution

uCanalyt=exp(-400*t)*(16/17*cos(800*t)

+13/17*sin(800*t))

-4/17*sin(omega*t)-16/17*cos(omega*t);

% error between solutions

err=uC-uCanalyt;

The program TKSL/C is available on

http://www.fit.vutbr.cz/ kunovsky/TKSL/download.html .

To run the computation copy the code above to the text
file named input by the command in the terminal

cltksl -t 0.1 -s 1e-4 input > output
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