
A Method Based on Petri Nets
for Identification of Aspects∗

Vahdat Abdelzad
Islamic Azad University Science and Research

Branch, Tehran, Iran
v.abdelzad@srbiau.ac.ir

Fereidoon Shams Aliee
Electrical and Computer Engineering Faculty
Shahid Beheshti University, GC, Evin, Tehran,

Iran
f_shams@sbu.ac.ir

Abstract
One of the important factors in creating complexity in
software systems is the existence of crosscutting concerns.
The concept of aspect orientation with presentation of
a method could modulate crosscutting concerns into the
single unit that is called aspect, and solve many prob-
lems which are created such as tangling and scattering.
However, identification and specification of crosscutting
concerns and regarding them as aspects is not easy. For
this reason, various methods are presented but such meth-
ods are informal. In this paper, we propose a formal
method based on Petri Nets for identification of aspects.
In the method, a software system is expressed in terms
of a number of concerns. A concern is composed of one
or several requirements which realization of them cause
realization of that concern. The proposed method defines
requirements and concerns in the formal form by Petri
Nets and named them as requirement nets and concern
nets. Concern nets with dependencies which there are
between requirement nets, model the final system. The
execution of final modeled software system based on Petri
Nets and monitoring its transitions, shows crosscutting
concerns which are candidate aspects.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design; D.2.1 [Soft-
ware Engineering]: Requirements/Specifications—Elic-
itation methods

Keywords
Crosscutting concerns, requirement nets, concern nets,

∗An earlier version of this paper was presented at the
Early Aspects 2010 workshop at the 9th International
Conference on Aspect-Oriented Software Development.
The paper is recommended by Ruzanna Chitchyan and
Steffen Zschaler.

c⃝ Copyright 2010. All rights reserved. Permission to make digital
or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies show this notice on
the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy other-
wise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from STU Press,
Vazovova 5, 811 07 Bratislava, Slovakia.
Abdelzad, V., and Aliee, F. S. A Method Based on Petri Nets for Identi-
fication of Aspects. Information Sciences and Technologies Bulletin of
the ACM Slovakia, Special Section on Early Aspects, R.Chitchyan, S.
Zsachaler (Eds.), Vol. 2, No. 1 (2010) 43-49

Petri nets, Aspects, CPN/Tools, aspect-oriented require-
ments engineering

1. Introduction
Separation of concerns [5] is one of the important prin-
ciples in software systems development. The goal of sep-
aration of concerns is to break a software system into
several modules which have minimum overlapping with
each other. However, there is specific kind of concerns
that cannot be placed into a single module, these con-
cerns are called crosscutting concerns. In computer sci-
ence, crosscutting concerns are facets of a program which
affect (crosscut) other concerns. Crosscutting concerns
have two important characteristics [11]:

• Lack of decomposition from other sections (design
and implementation)

• Placing their implementation code among several
components

This kind of concerns when applied in the software sys-
tem may cause tangling and scattering problems. Aspect-
Oriented Programming (AOP) [12] through encapsulation
of crosscutting concerns into module called aspect could
prevent implementation level problems. Aspect-Oriented
Software development (AOSD) [1] express that aspect ori-
entation in implementation phase is not adequate, there-
fore, this concept has to be applied in other development
phases too. One of these phases is Aspect-Oriented Re-
quirements Engineering (AORE) [8]. The goal of AORE
is separation of crosscutting concerns and identification
of aspects. Many suitable methods for identification of
aspects are offered in [2, 14, 17, 4, 11]. These methods
are informal or concerns are regarded as non-functional
requirements.

Regarding the importance of formal methods in accep-
tance and application of a new method, it is necessary
to offer formal methods for identification and definition
of aspect-oriented primitive concepts. At this domain, in
[21] a formal definition of aspect using Petri Nets is pre-
sented. In [9] author(s) proposed an approach for solv-
ing conflict result from applying various aspects in the
same join-point. However, none of them present a formal
method for identification of aspects.

In this paper a formal method based on Petri Nets to
identify crosscutting concerns is proposed. In the method
main axis of activity is the notion of concern. A concern is
one or several functional or non-functional requirements

44 Abdelzad, V., and Aliee, F. S.: A Method Based on Petri Nets for Identification of Aspects

that can be seen as candidate for aspect. The system that
we want to identify its aspects is constructed as series of
concern nets and extant dependencies between require-
ment nets. The execution of resulting Petri Net for the
system will give an output that it is main factor for iden-
tification of aspects. The reason of using Petri Nets as a
formal method for identification of aspect is that:

• Petri Nets is an executable modeling language, so
can identify aspects with executing the model that
is constructed for a system.

• Understandability of Petri Nets is more than other
formal methods such as matrix.

• Petri Nets has useful tools for modeling and exe-
cution itself, so we can use these tools in order to
implement the method without design new tools.

In this paper, in Section 2 we have an introduction of
Petri Nets. In Section 3 we study concerns and crosscut-
ting concerns then we present formal definitions based on
Petri Nets for them. In Section 4, proposed method for
obtaining aspects will be described. In Section 5 a case
study according to proposed method is stated. Section 6
present related works and finally we have conclusions.

2. Petri Nets
Petri Net is a mathematical based method for modeling
and verifying software artifacts that for first time in 1962
by Carl Adam Petri was introduced. Petri Net provides
clear and precise semantics, an intuitive graphical nota-
tion, and many techniques and tools for their analysis,
simulation and execution. A formal definition for Petri
Net is following [20]:

Definition of Petri Net: A Petri Net is a 3-tuple PN=
(P, T, F) where:

• P is a finite set of places

• T is a finite set of transitions, P
∩
T= ø

• F⊆(P×T)∪(T×P) is a set of arcs

In [13] T. Murata gave some typical interpretations of
transitions and places. A transition (an event) has a cer-
tain number of input and output places representing the
pre-condition and post-condition of the event respectively.
The presence of a token in a place is interpreted as hold-
ing the truth of the condition associated with the place,
therefore, every software system can modeled with Petri
Nets. For example, take personnel management system in
consideration [9]. One of the system concerns is increasing
employee salary. For realization of the concern, a system
manager should enter user name and password for enter-
ing to the system, then should read employee salary and
increase amount of his/her salary. Finally, the manager
exit from system. Sequence operations of increasing em-
ployee salary concern are specified by the Petri Net CN
in Figure 1.

3. Concerns and Crosscutting Concerns
If aspect-oriented software development is to be fully re-
alized, concerns must be treated as first–class entities

Figure 1: A Petri net for personnel management
system.

throughout the life cycle [17]. Therefore, the systems
that want to develop with aspect-oriented software de-
velopment have to express their specifications and docu-
mentations in terms of concerns. Although the concept
of concern is well-understood intuitively but expressing a
good definition of concern is too hard. Many definitions
of concern are offered in [2, 7, 18, 10] which each of them
have different dimensions. We offer a comprehensive def-
inition of concern that includes these definitions.

One or several requirements depending on stakeholders
and system development that is able to implement by a
code structure, is called concern. In this definition, the
”one or several” indicates that one or several requirements
may constitute a concern. The ”requirements” mentions
to expectation behaviors in a system or program [16]. The
”stakeholders” indicates which requirements include both
system requirements and stakeholder requirements (e.g.
developers). The ”development” indicates that the defi-
nition is not limited to a certain phase of development
process, such as implementation phase. The ”able to im-
plement by a code structure” enhances the application
of concern concept in many developing methods, such as
object-oriented, structured and any developing methods
which have structures related to implementation. So, we
can utilize concern concept for quality and quantity char-
acteristics of systems.

Crosscutting concerns are main reason for causing tan-
gling problem. The tangling problem is an obstacle for un-
derstandability and maintainability of systems [15]. Ac-
cording to the above definition of concern, we can define
a crosscutting concern in the following: a crosscutting
concern is a type of concern and has requirements that
used to realization of other concerns, or entities of these
requirements realize other concerns. Also, we can relate
the following definition to tangling problem: If the re-
quirement of a concern is applied to realization of other
concerns then the requirement has tangling problem. The
definition for tangling is high level since a requirement can
constitute from several fine-granularity requirements (en-
tity) and tangling problem is occurred in one of them.

Now, we offer formal definitions based on Petri Nets for
concern and requirement. These definitions are necessary
for proposed method. In the definitions, requirements and
concerns are defined as requirement nets and concern nets
respectively.

Definition of Concern Net (CN): A concern net is a
2-tuple CN= (SoR, SoE) where

• SoR= (RN1, RN2, . . . , RNn) (n>0), it is a finite
set of requirement nets.

• SoE= (EO1, EO2, . . . , EOn) (n>0), it is a finite
set of execution orders

Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 2, No. 1, (2010) 43-49 45

Figure 2: Requirement nets RN1, RN2.

Figure 3: Concern net CN1 with two requirement
nets and one execution order.

Definition of Requirement Net (RN): A requirement
net is a 2-tuple RN= (PN, LE) where:

• PN is a Petri Net which is following: |P|=2, |T|=1,
|F|=2.

• LE= (O1, O2, . . . , On), is a set of logical entities
such as class.

Definition of execution order (EO): An execution
order is a sequence of requirement nets which present fol-
lowing:

EO= (RN1, RN2, . . . , RNn)

For example, two requirement nets in the names of RN1,
RN2 are shown in Figure 2. The requirement net RN1

(cf. Figure 2.a) is constituted one Petri Net PN1 and two
logical entities O11, O12. Also requirement net RN2 (cf.
Figure 2.b) under one Petri Net PN1 and three logical en-
tities O21, O22, O23 is constituted. In Figure 3, a concern
net in the name of CN1 is shown. The concern net CN1

is constituted two requirement nets RN1, RN2 and one
execution order EO1. The execution order EO1 is (RN1,
RN2). In the concern net CN1 transitions R11, R12 and
requirement nets RN1, RN2 are face to face. Due to ex-
istence an execution order in Figure 3, one token in the
first place of concern net CN1 is placed.

4. Identification of Aspects Using Petri Nets
We consider eight stages for realization of the method. In
order to identification of aspects, these stages should be
satisfied respectively.

Stage 1: in this stage, system expresses in terms of con-
cerns. The system concerns get from lexical analysis of
the system text. Specifying the system via concerns is
necessary for proposed method due to the fact that in
our method concerns are first-class.

Stage 2: in this stage, we specify requirements which
are associated to each concern. The requirements may
obtain through any traditional requirements engineering
approaches. The quality and quantity of specified require-
ments for every concern depend on interactions between

requirements engineering and stakeholders [14]. However,
specification of all requirements for each concern in first
glance is not easy and some of them are usually speci-
fied with reviewing. In consideration of this method, a
requirement is taken into account as a independent Petri
Net. Therefore, it is possible that requirements gradually
go into the concern.

Stage 3: in this stage, we should constitute a requirement
net for each specified requirement in stage 2. According
to the definition of requirement net, we have to identify
logical entities for each requirement net. However, in this
stage, identification of logical entities related to require-
ment nets is not necessary. This operation is postponed
to stage 8, because it is not needed to decompose all re-
quirements to logical entities for identifying aspects. The
requirements that have dependencies with other concerns
or requirements should be broken into logical entities.

Stage 4: in this stage, in order to constitute concern nets,
we should specify execution orders for each concern which
is identified in stage 1. Requirements engineers with ana-
lyzing purpose of a concern and associated requirements
may elicit execution orders. Each execution order satisfies
one of its purposes. Also, the number of execution orders
has direct relation with requirements granularity (fine or
coarse).

Stage 5: in this stage, according to definition in Sec-
tion 3, we constitute a concern net for each concern that
is specified in the stage 1. For constituting concern nets,
we need to requirement nets and execution orders which
are specified in stage 3, 4 respectively. The execution
of each concern net implicates that the proper token is
placed in the first place of concern net. Therefore, for
any execution order that exist in a concern net, a token
must be placed in the first place of concern net. If there
is not enough token in first place, the concern net cannot
be executed in the final Petri Nets model correctly. So we
cannot identify aspects in the system.

Stage 6: in this stage, the dependencies, restrictions and
relationships among requirement nets and concern nets
must be identified. For example, restriction of execution
order is a kind of dependency. The dependencies are the
direct result of the business logic that system purpose to
support [3]. The relationships is kind of logic that can be
as co-process and co-data, also can take into account as
interpretive relationship [17]. Interpretive relationships
reflect interpreted semantics associations among concerns
(logical).They depend primarily on the context-dependent
interpretation of concern semantics and significance. In
the applying of dependency between two requirement nets,
one new place as temporary place is created. In the tem-
porary place, a token of dependency is placed. This token
is composed of concern net and requirement net names
which causes complete execution of system. When these
dependencies are imposed into the model, the Petri Nets
model mentions to the final system. The model must be
executed in proper form. Lacks of execution model indi-
cates that dependencies and tokens of Petri Nets are not
defined correctly.

Stage 7: in this stage, for identifying crosscutting con-
cerns (aspects) following operations should be performed:
first, we have to specify transitions of each concern net
that have two or more than two entrances. Second, if

46 Abdelzad, V., and Aliee, F. S.: A Method Based on Petri Nets for Identification of Aspects

Table 1: Relating aspects with Logical Entities
(LE).

LE1 LE1 . . . LEn

Aspect1
Aspect2

. . .
Aspectn

value of their entrances tokens are different, so entrance
token and transition token are taken into the 2-tuple, such
as (token1, token2). Therefore, if a transition has two or
more than two entrances with different tokens, for any
different token, there has to be defined separate 2-tuple.

Stage 8: After identification of these 2-tuples, the logical
entities associated with requirement nets in the 2-tuples
should be determined. If there is a logical entity that is
in the set of logical entities of two requirement nets be-
longing to a 2-tuple, that logical entity is considered as an
entity that has tangling problem. The concern net which
has this requirement net in their set of requirement nets,
considered as crosscutting concern (aspect). However, a
concern net may be has transition with several entrance,
but while the tokens are similar, the transition will not
explain any meaning.

Implementation of the method by Petri Nets provides a
number of collections that includes logical entities and
imposing aspects. It is possible that a share collection
exist within them. With extraction of this logical entities
and aspects, we will reach to structure like Table 1. In
the Table 1, name of logical entities and imposing aspects
are specified.

5. Case Study
In this section, a case study for description of proposed
method is offered. The case study is a hotel manage-
ment system [11] which is explained in following concerns
(stage 1):

• C1: Reserve Room: To reserve a room, you check
the room availability, and if a room is available, you
create a reservation.

• C2: Reserve Room: To check in a customer, you
assign him to a room and consume his reservation.
At the same time, you create an initial bill for the
customer.

• C3: Reserve Room: To check out a customer, you
collect the payment for the bill. Once the bill has
been paid, the customer is removed from the room.

• C4: Reserve Room: To log, the system checks oper-
ations and if there are changes, it loges them.

Now that identifying concerns of the system is done, we
should determine requirements of each concern (stage 2).

The requirements of any concern are depicted in Figure 4.
In Figure 4, every concern and its requirements are illus-
trated in the same simple structure with viewpoints [13,
16]. After the associated requirements for each concern
are specified, we must constitute requirement nets (stage
3). In our case study, there are ten requirements therefore

Figure 4: Concerns and associated requirements
for hotel management system.

Figure 5: Requirement nets for R11, R12.

we have to constitute ten requirement nets. For instance,
the requirement nets RN11, RN12 for the requirements
R11, R12 are depicted in Figure 5 respectively. These re-
quirement nets just are constituted based on the definition
in Section 3. In other words, we must follow the defini-
tion in order to constitute these requirement nets. But
important point is that, in this stage, we do not iden-
tify logical entities (set of logical entities is considered
null) for each requirement net because this action will be
performed afterwards. The remaining requirement nets
of hotel management system will constitute in the same
way.

In stage 4, we specify execution orders for the concerns.
The execution orders for each concern are depicted in Ta-
ble 2.

For instance, execution order of concern C1 is EO11 that
RN11, RN12 have to execute respectively. This means
that check room availability concern has to satisfy before
making reservation concern. In stage 5, we make concern
nets. There is an execution order for each concern there-

Table 2: The execution orders for concerns of ho-
tel management system.

Concern
Name

Name of execu-
tion order

Execution order

C1 EO11 RN11,RN12

C2 EO21 RN21,RN22,RN23

C3 EO31 RN31,RN32,RN33

C4 EO41 RN41,RN42

Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 2, No. 1, (2010) 43-49 47

Figure 6: Concern net for Reserve Room (C1).

Figure 7: Dependencies between concern nets CN2

and CN3.

fore in the first place of every concern net one token has
to be placed. For example, concern net CN1 for concern
C1 (Reserve Room) is depicted in Figure 6. The concern
net CN1 composes of two requirement nets and an execu-
tion order. In the concern net CN1 because of existing an
execution order, one token is placed in place p10. Other
concern nets are constituted in the same way.

After constitution of all concern nets, we can identify de-
pendencies between concern nets and requirement nets
(stage 6). In many cases, dependencies and relationships
exist between requirement nets of concern nets. Also, it is
possible that some concern nets have dependencies with
other concern nets. The dependencies of the hotel man-
agement system are a kind of restriction of execution order
and interpretive relationships. For example, in the sys-
tem, we should create bill and then calculate it, and also
first assigning room concern should performed and then
room should be emptied. These dependencies for two con-
cern nets, CN2 (check in customer) and CN3 (check out
customer) is depicted in Figure 7.

In Figure 8, tp1 and tp2 are two places with gray color.
These places are regarded to establish dependencies be-
tween requirement nets (RN21, RN33) and (RN23, RN31).
In the temporary places for any exit arc, a token must be
placed in it by related enter arc, because a requirement
net may have dependencies (more than one) with other
requirement nets. Therefore, adequate tokens must exist
in the temporary places for applying dependencies and
execution of the model. Now we have a final Petri Nets
model for hotel management system which is depicted in
Figure 9. The final Petri Nets model must be executed
then its transitions should be examined (stage 7). This
action can be implemented with CPN/Tools and its mon-
itoring capability.

The monitoring output of final Petri Nets model of hotel
management system for four transitions R21, R22, R33,
R41 is depicted in Figure 9.

Figure 8: Final Petri nets Model for hotel man-
agement system.

Table 3: Logical entities of requirement nets for
hotel management system.

Requirement nets Logic entity
RN11 Room
RN12 Reservation
RN21 Room
RN22 Reservation
RN23 Bill
RN31 Bill
RN33 Room
RN41 Room, Reservation, Bill

In Figure 9, there is an output like <C2, R21><C1, R11>.
This 2-tuple indicates that if minimum a share logical en-
tity exist in the requirement nets RN21 and RN11 then
two concern nets CN1, CN2 can be considered as aspect,
because the requirement nets has tangling problem. In
here, this share logical entity that cause tangling problem
is ”Room”. Action for identifying logical entities must
be performed for requirement nets which appear in mon-
itoring output. Logical entities for monitoring outputs
requirement nets are listed in Table 3 (stage 8). We con-
tinue this survey (monitoring output) until it is deter-
mined that there is share logical entities or not. When
there are sharing entities, face to face concerns can be
considered as aspect. In the hotel management system
because of existing share entities in all requirements, four
concerns are viewed as aspect and we call them A1, A2,
A3 and A4. Any concern in the system as aspect has a
series of logical entities that aspect is imposed to them.
These logical entities are sharing entities and are depicted
in Table 4.

48 Abdelzad, V., and Aliee, F. S.: A Method Based on Petri Nets for Identification of Aspects

(R11=RN11; R12=RN12; R21=RN21; R22=RN22; R23=RN23;

R31=RN31; R32=RN32; R33=RN33; R41=RN41; R42=RN42) and

(C1=CN1; C2=CN2; C3=CN3; C4=CN4)

Figure 9: The monitoring output in CPN/Tools
for hotel management system.

Table 4: Relating aspect with logical entities in
hotel management system.

Room Reservation Bill
A1

√ √ √

A2
√ √ √

A3
√

A4
√ √ √

6. Related Works
Rashid [14] provide the AORE model and ARCaDe tools
for describing components and requirements-level aspects.
Examples of these aspects are compatibility, availability.
This work build on ViewPoints model [6], which is in-
tended to support the integration of heterogeneous re-
quirements specified from multiple perspective. In AORE
model, concern identification relies on domain knowledge
of developers, and also concerns are non-functional prop-
erties. We use a similar means for identification of con-
cerns in stage one of proposed method and are considered
concerns as functional and non-functional properties. Our
method uses a formal method for identification of aspects
but AORE model use an informal approach.

Elisa [2] proposed a Theme approach for viewing the re-
lationships between behaviors in a requirements docu-
ment, identifying and isolating aspects in the require-
ments, and modeling those aspects using a design lan-
guage. In Theme approach, Theme provides support for
aspect-oriented development at two levels. At the require-
ments level, Theme/Doc and at the design level Theme/
UML. Theme/Doc can be used as a method for identify-
ing concerns in the stage one of our method. Also, Theme
approach presents an informal method for identification
of aspects.

D. Xu [21] firstly incorporated the features of AOP into
Petri Net and extended Petri Nets to support AOM. His
work is based on Predicate/Transition Nets (PrT nets).
Lianwei Guan [9] presents a Petri Net-based approach to
support aspect-oriented modeling. In this approach, soft-
ware systems are modeled as aspect nets and base net,
then a woven mechanism is given to compose the aspect
nets and base net. They also give four mechanisms to
model the order constraints and dependencies among as-
pects that supposed on the Same Joint Point (SJP), and
give a solution to detect conflict relations among the as-
pects. Two method based on Petri Nets are not present

a method for identification of aspects. However, these
methods can be used in our method as a complementary
approach. In [19] authors proposed an approach based on
matrix for identification of aspects. This approach and
our method using common concepts for identifying as-
pects but there is no useable model for this approach in
order to can be used in the design level but the design
model of our method can be used in the design level.

7. Conclusions
This paper has offered a formal method based on Petri
Nets for specification of crosscutting concerns and iden-
tification of aspects. In the proposed method, a software
system was considered as sets of concern nets. Each con-
cern net is constituted as a set of requirement nets and
execution orders. The requirement nets have logical en-
tities which will be used for identification of aspects and
may have dependencies with other requirement nets. For
identification of aspects, we execute the final Petri Nets
model and then monitoring each transition. In the mon-
itoring process, if a transition has following conditions:
(1) each transition has two or more than two entrances;
(2) token of entrances are different; (3) There is a share
entity between two various entrances, we consider its dom-
inant concern net of transition as aspect. Offering a for-
mal method based on Petri Nets for identification of as-
pects provides some advantages. One advantage is that
we make sure of what was considered as an aspect is cross-
cutting concern. Therefore, an aspect with high finality
can be considered in the next development phases.

There is still shortcoming in the proposed method. This
method identify aspects using Petri Nets but cannot de-
termine join-points with more detail and the circumstances
of imposing aspects (after, before, around) to logical en-
tities, therefore, still there are works have to be done to
extend the method in the future.

References
[1] Aspect-Oriented Software Association. Aspect-oriented software

development. AOSD Web page. http://aosd.net/, 2002.
[2] E. Baniassad and S. Clarke. Theme: An approach for

aspect-oriented analysis and design. In 26th International
Conference on Software Engineering (ICSE 2004), pages
158–167. IEEE CS, 2004.

[3] R. V. Binder. Testing Object-Oriented Systems: Models, Patterns
and Tools. Addison-Wesley, 2000.

[4] R. Chitchyan, A. Rashid, P. Rayson, and R. Waters.
Semantics-based composition for aspect-oriented requirements
engineering. In 6th International Conference Aspect-Oriented
Software Development (AOSD 2007), pages 36–48. ACM, 2007.

[5] E. W. Dijkstra. A Discipline of Programming. Englewood Cliffs,
NJ:Prentice Hall, 1976.

[6] A. Finkelstein and I. Sommerville. The viewpoints faq. BCS/IEE
Software Engineering Journal, 11(1), 1996.

[7] J. D. Gradecki and N. Lesiecki. Mastering AspectJ:
Aspect-Oriented Programming in Java. Wiley, ISBN:
0-471-43104-4, 2003.

[8] J. Grundy. Aspect-oriented requirements engineering for
component-based software systems. In 4th IEEE Int’l Symp. on
RE, pages 84–91. IEEE CS, 1999.

[9] L. Guan, X. Li, and H. Hu. A petri net-based approach for
supporting aspect-oriented modeling. In 2nd IFIP/IEEE
International Symposium on Theoretical Aspects of Software
Engineering, pages 83–90. IEEE CS, 2008.

[10] IEEE. IEEE recommended practice for architectural description
of software-intensive systems. Technical Report IEEE Std
1471-2000, Software Engineering Standards Committee of the
IEEE Computer Society, 2000.

Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 2, No. 1, (2010) 43-49 49

[11] I. Jacobson and P.-W. Ng. Aspect-Oriented Software Development
with Use Cases. Addison-Wesley, 2004.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In
M. Aksit and S. Matsuoka, editors, Proc. of 11th European
Conference on Object-Oriented Programming (ECOOP’97),
LNCS 1241, Jyväskylä, Finland, June 1997. Springer.

[13] T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580, 1989.

[14] A. Rashid, A. Moreira, and J. Araújo. Modularisation and
composition of aspectual requirements. In 2nd International
Conference on Aspect-Oriented Software Development (AOSD
2003), pages 11–20. ACM, 2003.

[15] A. Rashid, P. Sawyer, A. Moreira, and J. Araújo. Early aspects: A
model for aspect-oriented requirements engineering. In
Proceedings of the IEEE Joint International Conference on
Requirements Engineering (REŠ02). IEEE, 2002.

[16] I. Sommerville. Software Engineering, Seventh edition.
Addison-Wesley, 2005.

[17] S. M. Sutton and I. Rouvellou. Modeling of software concerns in
cosmos. In 1st International Conference on Aspect-Oriented
Software Development (AOSD 2002), pages 127–133. ACM,
2002.

[18] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N degrees of
separation: Multi-dimensional separation of concerns. In 21st
International Conference on Software Engineering (ICSE), pages
107–119, Los Angeles, 1999. IEEE.

[19] K. van den Berg, J. M. Conejero, and J. Hernández. Identification
of crosscutting in software design. In 8th International Workshop
on Aspect-Oriented Modeling, 2006.

[20] W. van der Aalst. The application of petri nets to workflow
management. Journal of Circuits, Systems, and Computers,
8(1):21–66, 1998.

[21] D. Xu and K. E. Nygard. Threat-driven modeling and verification
of secure software using aspect-oriented Petri nets. IEEE
Transactions on Software Engineering, 32(4):265–278, April
2006.

