
Application of Design Patterns in Service Oriented
Architecture

Roman Šelmeci
∗

Institute of Informatics, Information Systems and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava
Ilkovičova 2, 842 16 Bratislava, Slovakia

selmeci.roman@gmail.com

Abstract
Developing system on principles of Service Oriented Ar-
chitecture (SOA) is not an easy task. Among many tech-
niques used in software development process, Model Driv-
en Development is quite popular. When applying this
paradigm properly, we are able to write and implement
computer programs quickly, effectively and at minimum
cost. Sometimes, this can be quite difficult and specific
problems may occur, especially in case when we want to
know if system meets the requirements of SOA. The ob-
jective of this extended abstract is to investigate whether
utilization of informal SOA Design Patterns could offer a
solution to these problems. Patterns are transformed into
a machine acceptable form, which enable identification of
pattern instances in system models. Object oriented anal-
ysis and the theories of categories and graphs are used for
(semi)formalization of design patterns. According to our
results, the method proposes a better utilization of SOA
Design Patterns in the modelling of new or existing sys-
tems.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.10 [Software Engineering]: Design; D.2.11
[Software Engineering]: Software Architectures

Keywords
Service Oriented Architecture, design patterns, theory of
category and graph, design pattern models, pattern ori-
ented development, SOA Design Patterns

∗Recommended by thesis supervisor: Assoc. Prof. Viera
Rozinajová
Defended at Faculty of Informatics and Information Tech-
nologies, Slovak University of Technology in Bratislava on
August 20, 2018.

c© Copyright 2018. All rights reserved. Permission to make digital or
hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copy-
rights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, to redistribute to lists, or to use any com-
ponent of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from STU Press, Vazovo-
va 5, 811 07 Bratislava, Slovakia.
Šelmeci, R. Application of Design Patterns in Service Oriented Archi-
tecture. Information Sciences and Technologies Bulletin of the ACM
Slovakia, Vol. 10, No. 2 (2018) 16-21

1. Introduction
Principles of Service Oriented Architecture (SOA) bring
many advantages into software development [7]. However,
its application can fetch along some problems especially
when models and Model Driven Development (MDD) is
involved. Using the models is not an easy task [9]. We
face several elementary problems:

• how to unify different models (or at least how to
find common vocabulary)

• how to utilize this unification for effective support
of the MDD process and

• how to support models verification (debugging)

According to our opinion, one concept which could bring
required results and improvements is an application of de-
sign patterns within MDD. Natural requirements of every
engineering discipline − reusing some ”good practices” of
the given field − are presented in design patterns.

SOA Design Patterns are currently published only in in-
formal text form. This kind of pattern description brings
some limitations[1]:

• users of the pattern must be aware of the existence
of the pattern

• they have to know how to apply it,

• it is highly probable that every user of pattern cre-
ates a slightly different solution,

• it is difficult to manually modify all areas of the
solution which were affected by the pattern and

• manual application of the pattern may bring a mis-
take.

Therefore, design patterns representation is critical to
their successful application.

The structure of this extended abstract is as follows. In
the second section, we will briefly introduce existing ap-
proaches for SOA Design Patterns utilization and open
problem are introduced. In the third section, we will pro-
pose our method for application of SOA Design Patterns
in MDD. In the fourth section, we will describe our ex-
periments and the last fifth section contains conclusion.



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 10, No. 2 (2018) 16-21 17

2. Background
Existing research sources offer only few existing approach-
es for application of SOA Design Patterns. Authors in [16,
14, 15] propose a method for formalization of limited
patterns group with application of SoaML and Event-B.
SoaML is used for (semi)formal representation of pattern-
s in models and Event-B is used as a method for ver-
ification if pattern in models are correctly used. This
approach enables modeling structural and behavioral as-
pects of patterns. Another approach uses ontology [12].
Authors transform patterns into ontology which suggests
pattern according to user requirements in form of ques-
tions and corresponding answers. Both of these approach-
es has some limitations. The first one has limited appli-
cation only for message oriented patterns and the second
one does not allow to verify system models but only sug-
gests patterns according to user requirements. In addi-
tion, user has to apply pattern by himself/herself. The
last approach [4] declares representation of SOA Design
Patterns only by Service Component Architecture (SCA)
standards and patterns are formalized by utilization of
their Domain Specific Language (DSL) for ”rules cards”
based on SCA metrics. A rule describes a metric, a re-
lationship, or a combination of other rules using set of
custom operators. This approach supports identification
of pattern variants in SCA model but does not support
modeling with pattern involved.

SOA Design Patterns are influenced by patterns from oth-
er areas. Therefore, we studied also several approaches
from object oriented paradigm, service iteration patterns
and enterprise integration. After having done an analysis
of different methods, we came to the following conclusion:

Approaches for the object oriented design patterns are
mostly focused on generating code in specific program-
ming language. SOA Design Patterns often appear in a
higher abstract form, which mostly can not be directly
converted into executable programming language code.

Petri’s or Open nets used for Service interaction patterns
are closely linked to a concept of services communicating
through messages and connected channels. SOA Design
Patterns publication contains many categories which are
not concerned with messages, these approaches are not
suitable for all of them.

SOA Design Pattern are published in informal text way.
Therefore, if we want to reach better utilization of com-

puters with its manipulation, we need to define at least
some (semi)formal representation of patterns. If we would
like to support modelling of architecture in SOA based
systems, one of the most important sections of design pat-
tern definition is a structure. Our main goal is to propose
an approach for better application of SOA Design Pat-
terns [7].

We set following requirements for new method:

• Propose a transformation process of SOA Design
Patterns from informal text representation into new
computer acceptable form.

• Include support for representation and identification
of SOA Design Patterns which enable its application
during modeling of system.

• Include support for modification suggestions of sys-
tem’s model according to rules from pattern appli-
cation in order to remove well known bad design
structures.

• Enable evaluation of design quality according to
identified design patters in models.

A language independence in modeling language and also
supporting tool is main criterion for method implementa-
tion.

3. Our Method for SOA Design Patterns Appli-
cation

Rigorous and precise structural modeling of SOA design
patterns could be reached by a graph theory and category
theory.

Graphs, as bases for structural modeling of patterns, sup-
port quite easily patterns transformation to required mod-
el notation. Graph algorithms and databases, which could
bring flexibility and tool support to application of pat-
terns, can be also used. This utilization of graphs also
supports describing (nested) variable sub-models as well
as inter-pattern synchronization across several diagrams
or models synchronization [11]. Graph grammar could be
also used for (semi)automatic transformation of models.

Our approach is based on approaches from [2, 6] and ob-
ject oriented analysis. It defines common vocabulary for
annotating system models with extra information and en-
ables reusing of ”good practices” from patterns in devel-
opment.(Fig. 1).

Figure 1: Overview of proposed approach. Pattern participants and relationships are used for annotating
models on different levels of abstraction. This enables identification of pattern instances and eventually
correctness checking of whole design with patterns.



18 Šelmeci, R.: Application of Design Patterns in Service Oriented Architecture

Design Pattern Profile
Design Pattern

Text
Pattern semi-formalization

Pattern Vocabulary
Meta-Model

Pattern Vocabulary

People

Problem Solution Context Impact Application

Analytic

Pattern Structure

Impact Factors

Pattern Variants

Application
Grammar

Semi-formal

CASE Utility

Can readCan read

Figure 2: Overview of transformation process.

The authors in [2] propose a language-independent ap-
proach for visual patterns modeling which could be used
in MDD. They applied their approach to a formalization
of object-oriented patterns and provide simple examples
of how to apply their approach to other kinds of design
patterns like work-flow patterns and enterprise integra-
tion patterns (EIP). However, the authors did not apply
their approach to SOA Design Patterns [7]. Authors also
do not propose method for identification of pattern in ex-
isting system models and method for modification of the
model according to patterns.

First of all, we defined transformation process (Fig. 2) in
order to represent pattern in more computer acceptable
form. Input for the process is an informal textual design
pattern specification and its output is a pattern profile
suitable for computer processing.

The descriptions of an individual process steps follow:

1. Identification of pattern participants and theirs roles
with object oriented analysis of the informal textual
pattern specification.

2. Definition of pattern vocabulary and structure.

3. Identification of possible pattern variants.

4. Definition of new pattern profile with sections for
problem and solution variants, pattern context, pat-
tern impacts and pattern application.

Pattern as well as its instance can have many variations
([13]). We need to find out how we could describe these
variations as precisely as possible. Authors in [2] pro-
pose so-called variable pattern for purpose of capturing
variation of design pattern instances. Individual pattern
variants are modeled according to structural constrains

from created pattern vocabulary. Fig. 3 shows an ex-
ample of one variant for the Canonical Protocol Pattern.
Figure contains variant for situation when all services in
inventory use standardized communication protocol.

Some patterns like Enterprise Inventory pattern can be
applied only in specific context - within small to medi-
um size organization with legacy systems and sufficient
resources. All pattern variants of this pattern must con-
form this conditions. However, if we add these conditions
directly into each diagram, diagram could be unreadable
and also could contains cross-cutting concerns. Pattern
context is defined as extra diagram and synchronized with
individuals variants.

Pattern variant has unique impacts on the design. If de-
signer knows these impacts, he/she can choose design with
required characteristic and quality. Impact can influence
some of participants in instance of pattern variant (or only
subset of them) in specific time and duration.

The application of pattern is defined as a transformation
process from problem variable pattern into solution vari-
able pattern with utilization of typed attributed graph
transformation system (GTS) and graph grammar [6].

Now, we have method to describe SOA design patterns in
more (semi)formal representation. However, if we want
to reach a better application of the SOA design patterns
in MDD, we need to find solutions for another problems.
The first problem is concerned with a format variability of
the system models. Each stakeholder in process of SOA
based system development could use different notification
for description of his/her parts. Transformation of SOA
Design pattern into computer acceptable form makes it
possible to use a common vocabulary for annotation of
objects in different models which results in easier under-
standing of these labels.

<<Service>>
Service

<<Inventory>>
Inventory

<<Communication Protocol>>
CommunicationProtocolis used by

uses

is stored in

contains

is standardized in standardizes

Figure 3: Example of Canonical Protocol Pattern variant definition.



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 10, No. 2 (2018) 16-21 19

If we combine all pattern vocabularies from all trans-
formed patterns, the result is meta-model for modeling all
parts of SOA based system in which elements from trans-
formed patterns are participating (and pattern instances
can be identified). Our meta-model also allows us to check
structural correctness of the system or to create graph
grammar that conforms to the input meta-model ([10]).
Utilization of meta-model enables semi-automatic mod-
ification of the model by applying transformation rules
defined in patterns profiles. Pattern are added to the ex-
isting models with utilization of pattern-annotated mod-
el [3].

The second problem is how to detect pattern variant in
system design to find any possible problems in it. More-
over, elements forming design patterns need to be located,
interpreted and connected in the right manner. How to
do it?

Authors in [2] do not offer algorithm for detection of de-
sign pattern instances because they manually select de-
sired pattern and create its instance during modelling of
the system. They only propose algorithm for pattern sat-
isfaction. It performs a depth-first traversal of the Emp
tree, counting the occurrences of the variable parts along
the way and finally check if these occurrences satisfy the
given constraint of variable parts. Some steps of this al-
gorithm rely on graph pattern matching. Expansion set is
a core part in the process of a pattern satisfaction. Model
satisfies a variable pattern in case some pattern expansion
is found in this model.

Unlike the approach described in the [2, 3], we do not
use pattern instances during designing phase, instead we
assume that SOA patterns originate from SOA princi-
ples [7]. Therefore, we use several system models that are
annotated with patterns participants roles and then we
look for possible pattern instances. We offer to apply sets
of paths for description of variable patterns and unifica-
tion of a detected path in the pattern-annotated model
for detection of variable pattern instances.

In contrast to original approach in [2], designer with our
method can start with modeling the SOA based system
without any knowledge about all existing patterns. De-
signer only has to use pattern participants vocabulary.
The correctness of the system is verified in (semi)automat-
ic manner with utilization of a knowledge base created
from formalized SOA Design Patterns. This results into
the benefit that less experienced designer without knowl-
edge about all design patterns could be able to design
the system and reach almost the same design quality as a
designer who knows all patterns.

4. Experiments and Evaluation
We set up testing environment and conducted several ex-
periments which were focused on different areas:

4.1 Pattern Transformation to Proposed Profile and
Creation of a Knowledge Base of Patterns

We experimented with the following SOA design patterns:
Canonical Protocol, Canonical Schema, Domain Invento-
ry, Enterprise Inventory, Entity Abstraction, Logic Cen-
tralization, Policy Centralization, Process Abstraction,
Process Centralization, Rules Centralization, Service Lay-
er, Service Normalization, Schema Centralization, and U-

tility Abstraction, Redundant implementation. We trans-
formed all these patterns and stored them in the knowl-
edge base prototype. All of these patterns were be able
to transform into new profiles.

4.2 Definition of Domain Specific Language for An-
notation of SOA Solution with Pattern Vocabu-
lary

Our approach is language independent and can be im-
plemented in different forms. We used it in models with
utilization of UML stereotypes but also for experimenting
and testing we created a DSL named soa:Pt for creating
pattern annotated models. In our case, language is fo-
cused on modelling of SOA based system domain. As an
internal DSL is soa:Pt built on top of hosting language
Clojure 1. Semantic model [8] of this language is a meta-
model created by combination of all individual pattern
meta-models. Cardinality between domain objects is not
used because it is defined in individual pattern variants.
Each time a new pattern is added to meta-model, new lan-
guage structure is also added. soa:Pt controls if allowed
relationships used among domain objects (where inherit-
ed relationships are included) fulfills language semantic
model.

4.3 Identification and Reconstruction of Pattern
Variant Instance with Utilization of Graph
Database

Our aim is not to define a new algorithm for detection of
path in attributed graph, but to use already existing solu-
tion for detection of path in an attributed graph, therefore
we use Neo4j2 - graph database which offers declarative
language Cypher for path definition and detection. In or-
der to initialize database with data, soa:Pt statements are
translated into Neoj4 Cypher query.

4.4 Use Cases Testing
We had two types of use case tests. Firstly, we defined sev-
eral tests for each pattern inspired by case studies from [7].
These tests simulate adequate environment in which pat-
tern variants have to be identified and applied. The sec-
ond type of testing was performed on a real project. This
project is relatively new and its development started from
scratch. Service Oriented Architecture principles and mi-
cro-services are first-class citizens in this project. The
project was developed in the organization, which started
up just a short time before its beginning. There is no
legacy software, its culture is very flexible and develop-
ment is based on agile methodology. Core development
team consists of 5 people. In the first few months of de-
velopment, the focus was given to prototyping and no
architectural documentations was created. Services were
created taking into consideration the principles of SOA,
but without knowledge of SOA Design Pattern (most de-
velopers have a little knowledge about them). After some
time we started to create models and documentation of
created services in UML diagrams and ArchiMate. These
diagrams were taken and rewritten into soa:Pt. One of
system requirements was:

1Clojure, http://clojure.org/
2Neo4j.org, neo4j: World’s Leading Graph Database,
http://www.neo4j.org/



20 Šelmeci, R.: Application of Design Patterns in Service Oriented Architecture

Privileges Manager

Filter privileged data

Production Server

Privilege Manager
Docker Container

Runtime for Privilege
Manager

Privileges Manager

Ticket
Managers

Work Reports
Manager

Elements
Manager

Figure 4: One instance of Privilege Manager is used by several services.

<<Service>>
Filter privileged

data
<<Service>>

Ticket Manager

<<Service>>
Work Report Manager

<<Service>>
Element Manager

<<Service Instance>>
Privileges Manager

<<Service>>
Filter privileged

data

<<Service>>
Ticket Manager

<<Service>>
Work Report Manager

<<Service>>
Element Manager

<<Service Instance>>
Privileges Manager

<<Service>>
<<Service Facade>>

Privileges Manager Loadbalancer

<<Service Instance>>
Privilege Manager 2

runs in
comminicates with

is represented by
represents

comminicates with

comminicates with

communicates with

communicates with

communicates with

comminicates with

runs

runs in

is delegeted from

delegates to

communicates withdelegates to

comminicates with

runs

runs in

comminicates with

comminicates with
comminicates with

Figure 5: Redundant Implementation example. Top side shows identified problem and bottom side
proposed solution (red color represent remove modification and green add).

Business requires to manage user access to element data
according to his/her privileges. Data Privilege Manager
were developed for this purpose. This agnostic service
is used in several service compositions (etc. with Ticket
Manager, Work Reports Manager and Elements Manag-
er). Only one instance of Data filtering service was de-
ployed on production servers (Fig. 4).

How do we know that this design fulfills all requirements
[5] for manageable, efficient and robust system based on
SOA principles? We ran our pattern detection method on
system models and i.e. we were able to identified this:

Problem was identified in services for managing user priv-
ileges and filtering element data. Data Filtering service is
used in several service compositions, but only one service
instance was deployed on production services. Problem
pattern variant for Redundant Implementation was iden-
tified in actual design. According to the identified design
pattern variant, that service is a single failure point for
any other services. New design (Fig. 5) was created where

DF Load-balancer acts as a service facade for additional
instances of service. According to design profile we know
that this new design brings new impacts of complexity of
infrastructure and increases requirements on service gov-
ernment.

We were capable to remove several identified problems
from system with utilization of pattern application rules
and improve its design quality.

4.5 Evaluation
According to these tests, we are able to identify variants
of SOA Design Patterns in existing models only with ap-
plication of pattern vocabulary, knowledge base created
during process of (semi)formalization of SOA design pat-
terns and graph database which contains data from these
models. In addition, we are able to suggest design modi-
fication which can remove well known problems described
in SOA design patterns. Moreover, design quality can be
calculated from impacts of identified pattern variants in
system.



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 10, No. 2 (2018) 16-21 21

5. Conclusion
In this extended abstract we have presented a new ap-
proach for better application of SOA Design Patterns in
the process of SOA solutions modelling. Transformation
of existing informal pattern definitions into computer ac-
ceptable form with application of category theories and
graph theories have been presented. Our design pat-
tern profile was also presented. Pattern profile contain-
s information about impacts of individuals pattern vari-
ant, which can be in the future used for calculating over-
all score of system quality according to identified pat-
tern variants. Application of design patterns with uti-
lization of graph grammar and transformation system are
also parts of the pattern profile. Graph grammar sup-
ports semi-automatic calculation of alternative solution
from which identified instances of pattern problems are
removed. Transformation of several SOA Design Pattern-
s lets us to create knowledge base of patterns and define
vocabulary which can be used in annotating of SOA so-
lution models. On the top of this vocabulary, we created
simple DSL which has a support for syntax verification
of models and unify system model into graph represen-
tation. This unified representation of the whole system
design is used for searching instances of pattern variants
stored in knowledge base. We have introduced a new way
of description and detection of pattern variants with ap-
plication of graph paths and existing graph database lan-
guage. And finally, we experimented with several SOA
design patterns in synthetic use cases as well as in the
real project. Application on the real project leads to i-
dentified problems areas of creating system and permits
us to fix it. According to these results we believe that we
fulfill our main goals in dissertation thesis.

Acknowledgements. The work reported here was par-
tially supported by the Slovak Research and Development
Agency under the contract No. APVV-0208-10; the Sci-
entific Grant Agency of Slovak Republic, grant No. VG
1/1221/12; Operational Programme, ITMS 26240220039,
co-funded by the ERDF and STU Grant scheme for Sup-
port of Young Researchers.

References
[1] L. Ackerman and C. Gonzalez. Patterns-Based Engineering:

Successfully Delivering Solutions Via Patterns. Addison-Wesley
Professional, 2010.

[2] P. Bottoni, E. Guerra, and J. de Lara. A language-independent and
formal approach to pattern-based modelling with support for
composition and analysis. Information and Software Technology,
52(8):821–844, Aug. 2010.

[3] P. Bottoni, E. Guerra, and J. Lara. Formal Foundation for
Pattern-Based Modelling. In Proceedings of the 12th International
Conference on Fundamental Approaches to Software
Engineering: Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2009, FASE ’09, pages
278–293, Berlin, Heidelberg, 2009. Springer-Verlag.

[4] A. Demange, N. Moha, and G. Tremblay. Detection of soa
patterns. In S. Basu, C. Pautasso, L. Zhang, and X. Fu, editors,
Service-Oriented Computing, pages 114–130, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[5] J. Dick, E. Hull, and K. Jackson. System Modelling for
Requirements Engineering, pages 57–92. Springer International
Publishing, Cham, 2017.

[6] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of
Algebraic Graph Transformation (Monographs in Theoretical
Computer Science. An EATCS Series). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

[7] T. Erl. SOA Design Patterns. Prentice Hall PTR, 2009.
[8] M. Fowler. Domain Specific Languages. Addison-Wesley

Professional, 1st edition, 2010.
[9] R. France, B. Rumpe, and M. Schindler. Why it is so hard to use

models in software development: observations. Software &
Systems Modeling, Oct. 2013.

[10] L. Fürst, M. Mernik, and V. Mahnič. Converting metamodels to
graph grammars: doing without advanced graph grammar
features. Software & Systems Modeling, Sept. 2013.

[11] F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z. Diskin,
Y. Xiong, S. Gottmann, and T. Engel. Model synchronization
based on triple graph grammars: correctness, completeness and
invertibility. Software & Systems Modeling, Jan. 2013.

[12] L. Liu, P. Miao, L. Pavlic, M. Hericko, and R. Zhang. An
ontology-based advisement approach for soa design patterns. In
L. Uden, L. S. Wang, J. M. Corchado Rodríguez, H.-C. Yang, and
I.-H. Ting, editors, The 8th International Conference on
Knowledge Management in Organizations, pages 73–84,
Dordrecht, 2014. Springer Netherlands.

[13] D. Riehle. Lessons Learned from Using Design Patterns in
Industry Projects. In J. Noble, R. Johnson, P. Avgeriou,
N. Harrison, and U. Zdun, editors, Transactions on Pattern
Languages of Programming II, volume 6510 of Lecture Notes in
Computer Science, pages 1–15. Springer Berlin / Heidelberg,
2011.

[14] I. Tounsi, M. Hadj Kacem, and A. Hadj Kacem. Building correct
by construction soa design patterns: Modeling and refinement. In
K. Drira, editor, Software Architecture, pages 33–44, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[15] I. Tounsi, M. H. Kacem, A. H. Kacem, and K. Drira.
Transformation of compound soa design patterns. Procedia
Computer Science, 109:408 – 415, 2017. 8th International
Conference on Ambient Systems, Networks and Technologies,
ANT-2017 and the 7th International Conference on Sustainable
Energy Information Technology, SEIT 2017, 16-19 May 2017,
Madeira, Portugal.

[16] I. Tounsi, M. H. Kacem, A. H. Kacem, K. Drira, and
E. Mezghani. Towards an approach for modeling and formalizing
soa design patterns with event-b. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, SAC ’13, pages
1937–1938, New York, NY, USA, 2013. ACM.

Selected Papers by the Author
R. Šelmeci, Rozinajová. One approach to partial formalization of SOA

design patterns using production rules In FEDCSIS - Proc. of the
Federated Conf. on Computer Science and Information Systems,
pages 1381–1384, Wroclaw, Poland, 2018. Piscatawey : IEEE.

R. Šelmeci, Rozinajová. SOA Design Patterns - can they improve the
process of Model Driven Development? In SCC 2013
Proceedings of the IEEE 10th Int. Conf. on Services Computing,
pages 753–754, Santa Clara, California, 2013. Los Alamitos :
IEEE Computer Society.

R. Šelmeci, Rozinajová. Towards More Effective Service Modelling
Utilizing SOA Design Patterns. In Int. J. of Web Services
Research (IJWSR), [in review].


