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Abstract
The growing amounts of data brought about the need for
transition from offline to online data processing. In our
thesis, we explored the utilization of incremental and on-
line data processing in power engineering domain, where
this need is imminent because of ongoing introduction
of smart metering. We designed two stream processing
power demand forecasting methods, which addressed the
main requirements of stream mining, i.e., accuracy, time-
liness and adaptability. The third requirement relates to
changes that occur in stream data over time, i.e., concept
drifts. We studied two ways of adaptation of prediction
model to the drifts – informed and blind, which differ
in incorporation of an explicit change detection mecha-
nism. We proposed incremental forecasting method with
informed adaptation and online method with blind adap-
tation. Both of our approaches equaled the standard
batch approaches in accuracy with less computing re-
sources.

Categories and Subject Descriptors
• Mathematics of computing → Time series anal-
ysis; Regression analysis; • Information systems →
Data streams; Data mining; Data stream mining;
Data analytics; • Theory of computation → Online
learning algorithms; Support vector machines; Bio-
inspired optimization; • Computing Methodologies →
Machine learning; Supervised learning by regres-
sion; Online learning settings; •Applied computing
→ Forecasting.
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1. Introduction
The data volumes produced by various systems, devices
and sensors are continually growing. Likewise, the need
for methods, which help humans analyze and discover
knowledge from the large volumes of data, is growing.
The big data phenomenon is observed since the begin-
ning of this century [12]. Contemporary technologies can
already store large data quantities. Since the value of in-
formation hidden in data tapers over time, the data must
be processed and analyzed online. Therefore, batch pro-
cessing and analysis are in many cases no longer sufficient
and the stream data processing is preferred.

Our thesis is aimed at prediction methods in dynamic
environments with continually growing and changing data
sets (data streams), which manifest the need for transition
from batch to stream processing.

We focused on one application domain – power engineer-
ing, because of smart meters’ introduction. Smart me-
ters replace the annual physical power consumption me-
ter readings by continual sending of interval measure-
ments (e.g., every 15, 30 or 60 minutes). In the directive
no. 2009/72/EC issued by the European Parliament and
the Council, all European countries undertook to equip
at least 80% of electricity consumers with a smart meter
by 2020. Slovakia implemented this obligation in the Act
no. 251/2012 on Energy Sector. According to terms in
ordinance of Ministry of Economy of the Slovak Republic
no. 358/2013, distribution network operators must in-
stall the smart meters.By 2020, all the consumers who
are connected to the regional or local distribution system
with low voltage and their consumption is higher or equal
to 4MWh per year should be equipped with a smart me-
ter. That is about 600,000 out of 2.38 million consumers
connected to the low voltage [19].

Power suppliers will have at hand large volumes of stream-
ing data for analysis. Analysis of smart metering data is
beneficial for all stakeholders of the electricity market.
Customers can monitor and lower their own consump-
tion, suppliers can plan the power supply more precisely,
invoice the exact amounts of consumed electricity, create
tariffs tailored for customers, identify outages and illegal
consumption easily, etc. [19].

Since it is hard to store electricity, it is essential to keep
balanced voltage of the power grid. Power suppliers are
financially penalized for deviations in the grid (i.e., power
under/oversupply) the regulatory mechanisms, such as
pumped hydroelectric energy storage, must cope with.
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Therefore, they need to know ahead how much power will
their customers (i.e. their balance group) consume. One
way to get rid off power under/oversupply is trading at
the short-term electricity market. The power can be sold
no less than one hour ahead of its consumption. Online
analysis of smart metering data can provide very accurate
short-term power demand forecasts. For this purpose, au-
tomated resources and methods that consider the power
consumption properties, are required. The improvement
of current power demand forecasts in Slovakia by 1% can
lower regulatory fees by millions of euros.

1.1 Open Problems
Several research areas overlaps in the selected research
challenge. Therefore, we look at the open problems from
several perspectives – from the more abstract to the spe-
cific ones:

• big data [2]:

– adjustment of existing and design of new big
data analysis methods,

– easy interpretability of results;

• stream mining [11]:

– automated and adaptive preprocessing,

– evaluation of adaptive methods,

– usability in practice;

• power demand forecasting [8]:

– usability in practice and easy interpretability
of results,

– mapping and comparison of various existing
power demand forecasting methods.

Open problems are based on requirements of individual
research areas. Big data requirements are for example
scalability, timeliness or human cooperation. In stream
data mining, the requirements are mostly related to ac-
curacy, time and memory complexity and adaptability to
concept drifts. The advancements of forecasting in power
engineering depends on rigorous evaluation, understand-
ing of business needs and learning from many disciplines,
such as data mining, statistics, meteorology, etc.

1.2 Thesis Goals
The ultimate goal of this thesis was to design a forecast-
ing method that makes short-term forecasts, is adaptive
to concept drifts, processes stream data incrementally
and forecasts online; and to design a proper evaluation
to verify the method’s accuracy, ability to adapt to con-
cept drifts and time and memory complexity. We wanted
to answer whether incremental and online methods can
achieve the accuracy of batch processing, whether incre-
mental method can be still accurate in the presence of
concept drifts, how does such method behave during con-
cept drifts, and to what extent can concept drift detection
improve the accuracy of forecasting methods.

2. Related Work
In the first part of our thesis, we analyzed the theoretical
background of research areas that relate to the goal of our
thesis – big data, knowledge discovery from data (KDD)
and forecasting. We described the big data life cycle, cur-
rent big data management tools, and we specified in detail
the open problems in this area. We captured the KDD

process and the basic data mining tasks, such as data sum-
marization, anomaly detection, associations and patterns
mining, prediction and clustering. We focused on predic-
tion and divided the prediction methods by their theoret-
ical foundations (regression, time series analysis, artificial
intelligence). In the forecasting overview, we mentioned
the division of the forecasting methods to subjective and
objective ones, and the measures used for their evaluation.

In the second part, we focused on specific works in stream
mining area, power engineering domain and short-term
power demand forecasting. Data stream has similar prop-
erties as big data – (possibly infinite) volume, velocity
and variety (data of various types or data changing over
time). Therefore, the data should be analyzed as soon
as they are collected. The main requirements for stream
processing method are low time and memory complexity,
single pass over data, and the ability to adapt to concept
drifts. We based the analysis of current stream mining
methods on the survey by Gama et al. [7], which de-
fined the three steps of stream mining process (predict,
diagnose, update) and divided the stream mining meth-
ods by approaches used in four parts of stream processing
system diagram: memory, learning, loss estimation and
change detection (see figure 1). It is the third step of the
process (update) that addresses the need to adapt the
prediction model in time. The second step (diagnose) is
implemented in the change detection part, which alarms
about concept drifts, which require model update. Based
on the presence of explicit change detection mechanism,
the adaptation can be divided into informed and blind.
The blind adaptation updates the prediction model con-
tinuously, regularly without respect to the diagnostics.

Stream mining open problems specifies some of the big
data open problems, they are related to privacy, variety
and mostly to the human cooperation. The restrictions of
stream processing (limited time, memory, concept drifts,
. . . ) suggest that stream methods operate in a more com-
plex way. Despite of this, the methods are supposed to
be more understandable to humans and comfortable to
utilize in practice. Therefore, the thorough evaluation
and analysis of their properties, especially their ability to
adapt to concept drifts, are essential.

In power engineering domain, the analysis was aimed at
current changes in legislation related to smart metering
introduction, the way the power is produced in Slovakia,
how is the power demand estimated nowadays, and which
factors influence the power demand. From the short-
term standpoint, the demand is affected mostly by time
of the day, day of the week, holidays and weather, espe-
cially temperature. It is sufficient to use historical power

Figure 1: Stream data mining process [7] (1 – pre-
dict, 2 – diagnose, 3 – update; solid lines – manda-
tory steps, dashed lines – optional steps).
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load records only for very short-term forecasts (up to 24
hours), because it is assumed that the demand depends
only on the recent past and is not changing rapidly. The
current trends and technologies in smart metering are sub-
ject of a number of both local and global conferences,
e.g., Smart metering1, Energetika2, Energofórum3, Elek-
troenergetika4. The best power demand forecasting meth-
ods are regularly compared in competitons, such as M-
Competition5 and GEFCom6.

Prediction methods divide into two big groups by their
theoretical foundations – statistical and artificial intelli-
gence. The pros and cons of both groups are summarized
in table 1. They are often combined into hybrid meth-
ods. With the repopularization of neural networks at the
beginning of this century, they became the most utilized
artificial intelligence method, even in the power demand
forecasting. From the adaptability point of view, the blind
adaptation with a sliding window is mostly employed, i.e.,
a new prediction model is regularly trained on data from
the sliding window. The training of a new model can be
quite time-consuming and not always necessary. Informed
adaptation based on concept drift detection can poten-
tially improve prediction accuracy and spare computation
and memory resources. Informed adaptation can besides
historical power load records consider other data sources,
e.g., weather, holidays, consumer behavior, and separate
them from the prediction model. This can be advanta-
geous if the other data sources are not available/updated
all the time unlike smart metering data. When we ana-
lyzed existing power demand forecasting methods, we did
not encounter an approach with an informed adaptation.
That is why we focused on utilization of such approach in
the design of our stream processing prediction method.

3. Datasets
We used smart metering data from two countries: Slo-
vakia and Ireland.

Slovak data were obtained in the project “International
Centre of Excellence for Research of Intelligent and Se-
cure Information-Communication Technologies and Sys-
tems”7. The data included smart measurements from all
over the Slovakia from July 1, 2013 to February 16, 2015
(596 days). The measuring frequency was 15 minutes,
most of the customers were small and medium enterprises.
We divided the data into 19 parts by the region (according
to the first two digits of postal codes). We filtered out the
consumers without missing measurements and summated
the consumption of each region (groups of 100 to 1,300
customers). In the end, we got 19 power load time series.
We examined the series and selected four types of con-
cept drift patterns (see figure 2). The data are described
in more detail in publication [4].

Irish data came from Smart metering project of Irish reg-
ulatory office CER, that happened during 2007 to 2013

1https://konferencie.efocus.sk/konferencia/8.-rocnik-
konferencie-smart-metering-smart-grid-nova-energetika-
sme-na-nu-p
2http://www.power-engineering.sk
3http://www.energoforum.sk
4http://seen.fei.tuke.sk
5https://www.mcompetitions.unic.ac.cy
6http://www.drhongtao.com/gefcom
7http://ice-rise.sk/

Table 1: Pros and Cons of Power Demand Fore-
casting Methods
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• minimum statistical or
domain knowledge
required

• ability to model also
non-linear relationships
between power demand
and exogenous
variables
(e.g., weather)

• better multivariate
models

• difficult interpretability
• over-parametrization
• heavy computation

without optimization

and its goal was to perform trials to assess the perfor-
mance of smart meters, their impact on consumers’ energy
consumption and the economic case for a wider national
rollout. The data contained 30-minute measurements of
approximately 5,000 households and small and medium
enterprises8. We used aggregated power load time series
of 3,639 without missing measurements. We chose two
test sets: one month (September 20 to October 20, 2009)
and six months (july to december 2010) long. These test
sets were used in similar papers [13, 18]. The data were
normalized to 〈0, 1〉.

4. Incremental Power Demand Forecasting us-
ing Error-Driven In formed Adaptation

The adaptive prediction method for stream processing is
based on the stream mining process, which consists of
three steps: predict, diagnose, update (see figure 3). We
chose double seasonal Holt-Winters exponential smooth-
ing (DSWH) [16] as a prediction method, because of its
simplicity, robustness and suitability for incremental pro-
cessing as it is defined recursively. It can also model dou-
ble seasonality (daily and weekly) of power load time se-
ries. DSHW also won in comparison with various predic-
tion methods on European power load data [17].

Informed adaptation is based on monitoring of prediction
error in time. The increasing prediction error suggests
that prediction model becomes unsuitable for modeling of
the incoming observations and it is necessary to update
it. To detect changes in prediction error, we used the

8htttp://www.ucd.ie/issda/data/commissionforenergy
regulationcer/

Figure 2: Concept drift types in Slovak power de-
mand time series.
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Figure 3: Abstract diagram of adaptive forecast-
ing method consisting of 3 steps: 1 – predict
(black), 2 – diagnose (red) and 3 – update (blue).
yt and ŷt are real and forecasted power load values,
et is prediction error at time t.

condition defined by equation 1. The change is detected
when daily percentage error pet (for the last 24 hours,
i.e., the last 96 15-minute measurements) exceeds 5%. et
is prediction error and yt is power load value in time t.
The condition considers the specifics of power engineering
domain, specifically the maximum acceptable 5% daily
deviation of prediction from the actual power load and
the fact that both positive and negative deviations are
penalized.

pet =
|et−95|+ · · ·+ |et−1|+ |et|
yt−95 + · · ·+ yt−1 + yt

(1)

When a change is detected, the model is updated. To de-
crease the computing complexity, we decided not to up-
date the whole model, instead we update only a part of
its smoothing coefficients. We kept the coefficients related
to daily and weekly seasonality, which were assumed not
to change. The new coefficients were estimated from the
most current data from the 2-week sliding window.

The precondition of our method is an initial prediction
model trained on a longer chunk of data. This model is
then continually monitored and updated.

4.1 Evaluation
We evaluated the method by four experiments, which
compared the performance of the method on data streams
with and without concept drifts, incremental and batch
processing, the performance of the method on various
types of concept drift patterns with other commonly used
methods and the performance of the method on various
types of time series (outside power engineering domain).
Slovak data were used.

The prediction accuracy of our method was not signifi-
cantly different when we tested it on data with and with-
out concept drifts. The method worked good in both
cases.

The second experiment compared batch and incremental
approach with the same prediction method. In the batch
approach, the training set (all historical data) was at the
end of each day supplemented with measurements from
the current day and a new model was trained to predict
the next 24 hours. We found out that incremental pro-
cessing required approximately half the updates the batch
approach needed and at the same time its accuracy was
not significantly worse. It achieved comparably good ac-
curacy with much smaller amount of training data (2-week
sliding window) and updates.

In the third experiment, mean absolute percentage er-
ror (MAPE) was measured on four types of concept drift
patterns. The results were compared with 8 incremental
methods that used blind adaptation (daily model training
on data from a sliding window). The comparison is dis-
played on figure 4. The accuracy of our method was sig-
nificantly better than accuracy of some blindly adapting
methods and it was similar to the accuracy of an ensem-
ble model [4]. Our method worked best on incremental or
incremental/abrupt concept drift patterns. The informed
adaptation struggled the most with the abrupt concept
drift pattern.

The purpose of the last experiment was to find out for
which type of time series is our method the most suit-
able. We used data from M3 competition [14], which con-
tain 1,428 time series with monthly frequency from six
domains: micro, industry, macro, finance, demography
a other. Our method did not excelled in every domain,
however, it worked well for macro time series. It is the
most frequent type of time series, e.g., aggregated produc-
tion, demand, prices data for regions, states, etc. Power
demand also belongs to this type.

4.2 Discussion
The disadvantage of our method is that after the update
of the prediction model, its diagnostics is again possible
after 24 hours and great loss can occur during that time if
the model update did not improve the accuracy. The pre-
diction model should adapt more quickly and continually.
Despite of this disadvantage, we consider the employment
of informed adaptation in power demand forecasting as a
contribution, since we did not encounter such approach
in this domain yet and we showed its potential to achieve
similar results as the batch approaches and to spare com-
puting resources. Another challenge could be the investi-
gation of detected concept drifts and their connection to
events that might cause them. Because of the mentioned
disadvantage, we focused on online methods in the next
part of the thesis.

5. Smart Grid Load Forecasting Using Online
Support Vector Regression

Online stream processing, unlike incremental stream pro-
cessing, processes data one-by-one without the necessity
of their storage in a database or a sliding window. From
the adaptation standpoint, the model changes continually,
after processing of each instance, without change detec-
tion mechanism, i.e., blindly.

As a prediction method, we chose support vector regres-
sion (SVR). Its short-term forecasts are very accurate
(also in power demand forecasting) and it often outper-
forms neural networks [1, 9, 10, 15, 18]. SVR tries to find
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methods: 1– random walk, 2 – seasonal and trend decomposition by local regression+ARIMA, 3 – ensemble model [4],
4 – informed DSHW, 5 – random forest, 6 – multiple linear regression, 7 – SVR, 8 – multilayer perceptron, 9 – DSHW

Figure 4: Comparison of incremental adaptive DSHW (no. 4) with 8 incremental blindly adaptive meth-
ods on 4 types of concept drifts. Blue columns are AI-based methods, the violet one is an ensemble
model, the rest are statistical methods.

such function with ε margin, so most of the instances are
covered (modeled) by it. Instances that lay on the edge
of the margin are called support vectors. The distance
of instances outside the margin (outer vectors) from the
margin is penalized by cost C. Based on these princi-
ples we can define conditions for each group of vectors in
the SVR model: inner, support and outer vectors. If a
function with a margin can not be found, a kernel trick
(function) is used. The instances are transformed into a
space with more dimensions where such function exists.
One flaw of SVR is its inability to forecast more than one
value ahead. To forecast a longer horizon, multiple simul-
taneous SVR models must be used. To estimate suitable
SVR parameters (ε, C and parameters of kernel function),
biologically inspired optimization algorithms are utilized.

Online version of SVR has been already published in 2000
[5], but even nowadays it is not well-known, mostly be-
cause there is no standard library implementation. The
method tries to assign each new instances (vector) to one
of three vector groups so it satisfies the group’s condi-
tions. If it is not possible, the vectors in model migrate
between groups until there is found a space for the new
vector. There are three types of allowed migrations be-
tween groups (see figure 5). The maximum number of
vectors in model is limited by a threshold. The algorithm
of online SVR training is stated below (see algorithm 1).

5.1 Evaluation
We evaluated the method by six experiments. We com-
pared its accuracy with standard SVR, examined its ac-
curacy when various kernel functions were used, evalu-
ated accuracy of very short-term and short-term forecast,
compared its accuracy with selected traditional prediction
methods, explored the optimization of its parameters by

Figure 5: Geometric representation of possible
vector migrations. 1 – from outer to support, 2 –
from support to inner or outer, 3 – from inner to
outer vectors.

Algorithm 1: Online SVR training.
Vector removal (2-5) and vector addition (6-12).

1 if model contains threshold number of vectors then
2 until weight of the oldest vector is not minimum do
3 find vector with minimum weight in model
4 update (migrate) the vector

5 remove the oldest vector

6 add new vector to SVR model
7 if it is an inner vector then
8 end of action
9 else

10 until the vector is not support or outer vector do
11 find minimum needed updates (migrations) of

vectors in model
12 update model vectors

biologically inspired optimization algorithms, and eval-
uated its computing and memory complexity. We used
Irish data in these experiments.

We found out that online SVR has the same accuracy
as standard (batch) SVR. The best results for power de-
mand forecasting are achieved when radial basis function
is employed as the kernel function.

In the third experiment, we forecasted 30 minutes and
one hour ahead for one month and for six months. We
evaluated mean absolute percentage error (MAPE) and
found out that the error lowers with increasing number of
vectors in model, i.e., the longer the model forecasts, the
more accurate it is. We achieved similar results (MAPE
approx. 2.5%) as a similar existing method [18].

The fourth experiment was aimed at one-day ahead fore-
cast for six months. We used 48 simultaneous online SVR
models (one for each half-hour). The forecast error was
compared with other 10 methods that utilized a sliding
window. We also tried separate workday/weekend models
for 7 methods. The results are shown on figure 6. Online
SVR method achieved the third best accuracy. The best
methods were based on ensemble learning (random forest,
bagging, extremely randomized trees) and contained hun-
dreds or thousands of decision trees. Quite good accuracy
was achieved by statistical methods based on time series
analysis that considered double seasonality.

We compared online SVR to a similar work that used the
same one-month test set [13]. OS-ELM method clustered
similar consumers at first, then forecasted the consump-
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methods: 1 – random forest* , 2 – bagging, 3 – online SVR, 4 – extremely randomized trees*, 5 – bagging*, 6 – DSHW,
7 – seasonal and trend decomposition by local regression (STL)+ARIMA*, 8 – extreme gradient boosting*, 9 – extreme gradient
boosting, 10 – extremely randomized trees, 11 – STL+exp. smoothing*, 12 – random forest, 13 – SVR*, 14 – SVR, 15 – deep
learning, 16 – multilayer perceptron, 17 – STL+ARIMA, 18 – STL+ exp. smoothing

*separate workday/weekend model

Figure 6: Comparison of online SVR (no. 3) with 10 forecasting methods with sliding window, one-day
ahead forecast on 6-month test set. Blue columns are AI-based methods, the violet ones are ensemble
learning models, the rest are statistical methods.

tion of each cluster and finally summated the forecasts. It
utilized weather data in prediction as well. Average and
maximum MAPE of the method was 2.47% and 4.21%.
The results of our method were 3.00% and 4.01%. On
average, online SVR was worse, but its error did not in-
creased over time dramatically and behaved quite stable.

To estimate the parameters of SVR (ε, C and parameters
of radial basis function) we employed particle swarm op-
timization (PSO). In the fifth experiment, we examined
whether the accuracy can be further improved by utiliza-
tion of other optimization method. We chose cuckoo op-
timization algorithm (COA). We let the models with op-
timized parameters forecast for five times on one-month
test set. We discovered that parameters optimized by
COA significantly lowered the forecast error (by 0.02%).
The time of optimization by both of the algorithms was
almost identical.

The last experiment evaluated the time and memory com-
plexity of online SVR and compared it to standard (batch)
SVR from LIBSVM library [6]. We found out that the
time complexity of both methods is O(n2) to O(n3). Mea-
sured training times on one-month long test set are shown
on figure 7. The duration of a new vector addition to the
model depends on the number of vectors that have to mi-
grate in order to find place for the new vector. If the new
vector belongs to the inner vectors, the training time is
very low (see the light blue curve in the bottom of upper
graph in figure 7). If the maximum number of vectors
in model is limited by a threshold, training time oscil-
lates around mean value and the ascending trend stops.
The training time also depends on the length of the vec-
tors – the longer the vectors, the longer the training time.
On the other hand, the forecast error of SVR model with
longer vectors and higher threshold was lower. Memory
complexity of online SVR depends on the number of vec-
tors in model (i.e., on threshold). To create a new vector
it is also necessary to keep in memory a sliding window
of size of a vector. Batch SVR needs to keep in mem-
ory threshold number of observations, since it is always
trained on all historical data from scratch.

5.2 Discussion
The disadvantage of online SVR is that if we want to fore-
cast a longer horizon at once, a separate SVR model must
be used for each forecasted period, because the method

Figure 7: Comparison of online and batch (LIB-
SVM) SVR training time. Measured times, 48-
period moving average and trendline.
threshold = 2000 (up) and theshold = 1000 (down).

has only one output. Iterative strategy or reformulation
of the SVR model to multiple outputs, e.g., [3], could im-
prove its accuracy. Other possible improvements leading
to lower forecast error are inclusion of other data souces
(e.g., weather), a kernel function designed specially for our
data, usage of other optimization algoritms for SVR pa-
rameters estimation or clustering of consumers into simi-
lar groups before forecasting.

6. Conclusion
In this thesis, we analyzed areas related to predictive anal-
ysis on data streams, such as big data, knowledge discov-
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ery from data, forecasting or stream mining. The thesis
is set in the power engineering domain and we focused
on power demand forecasting. Our task was to create
a short-term forecasting method of power demand of a
group of consumers. The main motivation was the fact
that inaccurate forecasts cause big deviations in power
grid, which is damaged by them, and power suppliers are
financially penalized for causing deviations by a regula-
tory office. The improvement of forecasts in Slovakia by
1% could lower the regulatory fees by millions of euros.
The introduction of smart meters caused that much more
data is generated than it was available until now, and
therefore provided data for more accurate forecasts. That
is why there emerged a need for transition from standard
batch data processing to stream processing.

Data stream has similar properties as big data – volume,
velocity, variety. According to these properties, we identi-
fied the main requirements for stream prediction method,
i.e., accuracy, timeliness and adaptability. We put empha-
sis on usability of the method in practice, which is one of
the very often mentioned open problem of big data and
stream processing. In power engineering, these properties
project in endless streams of measurements from a large
number of smart meters. Regularly incoming power load
values are influenced by consumers’ behavior, weather, so-
cial events, etc. Requirements for power demand forecast-
ing method are daily prediction error under 5%, known
forecasts at least one hour ahead for electricity market
trading purposes, and consideration of concept drifts in
power load. Our task was one-day ahead power demand
forecasting for a group of customers of one power supplier,
i.e. a balancing group. Measurements from individual
consumers were summated into one time series.

We looked at stream forecasting methods mainly from two
standpoints – data processing and adaptation technique.
We focused on incremental and online processing, which,
unlike the standard batch processing, does not have to
keep all historical data in memory. The most utilized ap-
proach is incremental learning with partial memory, usu-
ally a sliding window. After each slide of the window,
the prediction model is trained on data from the window.
Therefore, the model develops in time and accomodates
some degree of adaptation. Since the adaptation happens
independently from the changes in data (concept drifts),
it is also called blind adaptation. On the other hand, in-
formed adaptation is based on explicit change detection,
otherwise it does not happen at all. This way of adapta-
tion can be more suitable in cases, when concept drifts are
not very frequent or distinct and regular blind adaptation
would not bring anything new to the prediction model.

In this thesis we studied two forecasting methods – in-
cremental with informed adaptation and online with blind
adaptation.

We found out that informed adaptation needed signif-
icantly less computing resources than batch processing
with blind adaptation and the accuracy did not signifi-
cantly lower. This method is suitable for flow time series
that measure activity over time, e.g., macroeconomic time
series of aggregated variables, such as unemployment, in-
dustry production, export, import, etc. The time series of
power demand of a larger group of consumers also belongs
to this category. The disadvantage of informed adapta-
tion was the required longer pause between two conse-

quent concept drift detections. That is why we decided
to explore online approach, which processes data in one-
by-one fashion without keeping them in memory.

We showed that online forecasting method with blind
adaptation is suitable for power demand forecasting and
achieves the accuracy of ensemble models, which have in
general much higher computing complexity. We evalu-
ated its properties, pros and cons by a series of tests and
our findings are further applicable in other application do-
mains. At the same time, we compared a wider spectrum
of power demand forecasting methods and provided a self-
contained view on performance of forecasting methods in
this area. We encountered in literature only a few sim-
ilar reports, which compared more prediction methods,
usually on private data sets.

Both of our approaches accomplished the daily forecast
error under 5% and the accuracy of batch forecasting
methods. Their design is aimed at constant computing
resources, which is an important aspect in big data pro-
cessing, low number of method parameters, easy under-
standability and interpretability. We addressed the open
problems we mentioned at the beginning: the need for
transition from batch to stream processing, usability in
practice and evalution of stream mining methods.

In future, we want to focus on possible improvements of
our approaches we mentioned in discussion sections of this
paper, or on brand new forecasting methods with promis-
ing results, such as approaches based on analysis of pat-
terns, which occur repeatedly in time series. These ap-
proaches can model well the various types of consumers or
various concept drift patterns in power load. We would
like to focus also on other smart grid components, e.g.,
photovoltaic panels, batteries, electric cars, which bring
new open problems related to their optimal settings, lo-
calization, microgrid establishment, etc. The road to the
future vision of smart grid must yet run through many
legal, practical and research challenges.
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