
Preferential Querying for the Semantic Web

Veronika Vaneková
∗

Institute of Computer Science
Faculty of Natural Sciences

Pavol Jozef Šafárik University in Košice
Jesenná 5, 04001 Košice, Slovakia
veronika.vanekova@upjs.sk

Abstract
We present a model of user preference based on fuzzy sets
and aggregation. The model is implemented in a web-
based system Kore enabling preferential search for many
users with different preferences within one arbitrary do-
main. The implementation includes a tool for top-k search
and a tool for learning user preference from rated objects.
The system was tested by real users and we analyze their
satisfaction with the results according to correlation coef-
ficients. We propose a fuzzified description logic s-EL(D)
as a formal background for the preference model. The
description logic s-EL(D) contains crisp roles and fuzzy
concepts that represent user preference. Fuzzy sets are a
part of a concrete domain D. Fuzzy membership values
generate an order of individuals starting from the most
preferred to the least preferred. Therefore we also de-
fine another description logic o-EL(D) where we dispose
of the specific fuzzy values and we keep only the order
of individuals. Then we study the relationship between
s-EL(D) and o-EL(D) concepts. We also introduce rea-
soning algorithms for the two defined description logics.
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1. Introduction
One of the most challenging problems of current web is
the enormous amount of available data. In addition to
a standard task of finding some necessary piece of infor-
mation, web users often need to perform more complex
tasks like buying some item online, finding a hotel for
holiday, booking a flight, applying for a job. Such tasks
mean searching for the most suitable object from some
domain (like notebooks, hotels, flights, job offers). User
preference in such cases tends to be more complex than
a sequence of keywords. It is closely related with various
attributes like price, location, technical parameters, etc.

Of course, it is possible to find a hotel, notebook or other
item of interest with Google and many users would do
so, but it also requires some manual comparison of found
results. This way we obtain too many results and it is
very hard to filter out the irrelevant ones with keywords.
For example, it is difficult to restrict the search only to
notebooks with a dual-core processor and a price below
400 EUR (a dual-core processor can be also indicated with
“Core 2 Duo”, “Pentium D” or similar). We also lack the
ability to order the search results according to various
attributes like price.

Some e-shops and portals allow users to search for items
according to the attributes and to specify their preferred
values. The specified values are used by the system to gen-
erate a conjunctive query and evaluate it in a database of
all items. However, if we specify one of the requirements
as “a price below 400 EUR”, the system would exclude
also an item that costs 401 EUR, even if it has excellent
values of all other attributes. Therefore using conjunc-
tive queries sometimes leads to losing potentially relevant
results. If a user specifies multiple requirements, it is
not necessarily a conjunction. Some requirements can be
conflicting (e.g. if the user wants both low price and high
quality) and the user may sometimes dispense one require-
ment for the sake of other requirement. For example, the
user may be able to pay a slightly higher price if it means
a significantly higher quality. Instead of returning a set
of items that fulfill the conjunction of the user’s require-
ments, it is more appropriate to return a sequence of items
starting from the most preferred to the least preferred.

This is the problem addressed by preferential search. Ac-
cording to one of the possible definitions used in eco-
nomics, “preference refers to the set of assumptions re-
lating to a real or imagined choice between alternatives
and the possibility of rank ordering of these alternatives,
based on the degree of happiness, satisfaction, gratifica-
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tion, enjoyment, or utility they provide”1. This definition
points out several interesting aspects of user preference –
firstly, preference creates an ordering of objects (ordered
from the most preferred to the least preferred) and sec-
ondly, this ordering is based on different degrees of pref-
erence. We will address both aforementioned aspects of
preference – the representation of user preference, its ac-
quisition and querying are the main topics of our research.

Our own model of user preference is described in Section
2. It is based on preferences to single attributes, specified
as fuzzy sets of preferred attribute values. Instead of a
conjunctive query, we process multiple requirements as a
fuzzy aggregation. The preferential search is performed
with top-k algorithm [6].

The model of user preference is then defined within an un-
derlying formal language called description logic, which
offers the advantage of automated reasoning about the
knowledge. Section 3, contains our own fuzzified descrip-
tion logic together with the description of reasoning tasks,
algorithms and theoretical results. Section 5 investigates
an interesting problem of viewing preference within a de-
scription logic as an order of objects. We also study how
the proposed description logics are related to one another
in Section 6.

Section 7 focuses on an experimental implementation of
a preferential search system. We describe the user in-
terface, representation and access to data and also the
software tools integrated in the system. Then we present
the results of tests and experiments performed to evaluate
the system.

2. Fuzzy Model of User Preference
Let us consider a user searching for a notebook. She can
choose the best notebook according to many attributes:
price, disk size, processor speed, RAM, screen diagonal,
graphic card type, number of USB ports, weight, battery
life, eventually according to specific accessories like infra-
port, bluetooth and various memory card slots. The user
usually considers only a subset of all possible attributes,
so we will also use only a few attributes for the purpose
of this example. Table 1 shows a sample dataset that
will occur in several examples. The data is collected from
different web pages offering notebooks.

Table 1: A sample set of four notebooks with at-
tribute values.

id brand price (EUR) speed (GHz) screen
nb1 Acer 365 2.1 16”
nb2 Asus 500 2.2 17”
nb3 Toshiba 647 1.2 12,1”
nb4 Lenovo 986 1.66 16”

Table 2: A sample dataset of four notebooks with
preference values of user U1.

id CheapU1 FastU1 WidescreenU1 preferred
nb1 1 0.66 0.5 0.8
nb2 0.66 0.72 1 0.73
nb3 0.18 0.12 0 0.13
nb4 0 0.4 0.5 0.22

1http://en.wikipedia.org/wiki/Preference
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Figure 1: Attribute preference CheapU1 with left-
trapezoidal function.

If the user searches for cheap, fast, widescreen notebook,
her possible attribute preferences are shown on the figures
1, 2 and 3. For example, Figure 1 shows that the user U1

is fully satisfied with notebooks that cost up to 400 EUR.
However, she does not prefer notebooks over 700 EUR at
all. Notebooks with price between 400 and 700 EUR are
preferred partially. Notebook nb1 from the table above is
cheap to a degree 1, while nb2 only to 0.66.
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Figure 2: Attribute preference FastU1 with right-
trapezoidal function.

screen

1.0

0.0

Widescreen
U1

11" 12" 13" 14" 15 " 17"16 "

Figure 3: Attribute preference WidescreenU1 with
right-trapezoidal function.

Every membership functions shows where an “ideal” value
(or an interval of ideal values) of the attribute lies. CheapU1
from Figure 1 shows that an ideal price for user U1 would
be from 0 to 400. However, the ideal value depends on
the user. Other user’s ideal prices could be e.g. from 0
to 600. This is the reason why we add the user identifier
like U1, U2 into the name of the fuzzy set.

An attribute preference also depends on the attribute do-
main. The attributes mentioned above (price, speed and
screen) have numeric values, so they have a natural or-
dering. Such attributes are called ordinal. If two attribute
values are near on the x-axis, their degrees of preference
are usually also similar. Thus user preference can be of-
ten represented with basic fuzzy sets of triangular and
trapezoidal shape (see Figure 4).

The first type (left-trapezoidal function) is typical for at-
tributes like price. Products with lower prices are pre-
ferred more. Right-trapezoidal function is the most com-
mon. It occurs for attributes like speed, power and ca-
pacity, where we can say “the more, the better”. If the
user prefers one value (or an interval of values) somewhere
around the middle of the attribute domain, we get the
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Figure 4: Basic types of membership functions.

trapezoidal type. This may be the case of the attribute
screen. The user may prefer 14” screen, while 12” may
already be too small and 17” may be considered too large
and unwieldy. The last type (inverse) is not very likely to
occur in the domain of notebooks, but it is possible e.g. in
the domain of hotels, for the attribute distance (from the
city center). This type would mean that the user wants
to live either very close to the center or somewhere in a
quiet suburb.

Some attribute domains can not be naturally ordered.
Such attributes are called nominal or crisp attributes.
The attribute brand is an example from the domain of
notebooks. There is only lexicographic order of the words,
but it has nothing to do with preference. Values that are
near in the lexicographic order do not have to be pre-
ferred in similar degrees. However, most users have some
preferred brands. This preference can be represented as
a classical (crisp) set of values, but we use fuzzy sets that
allow some values to be preferred more than the others.
An example can be µ(Toshiba) = 0.9, µ(Lenovo) = 0.8
and µ(Acer) = 0.7. Other values will be preferred to the
degree 0. Compared to nominal attributes, we are not
able to determine the type of the fuzzy set here. Thus
nominal attributes can be a little more complicated for
preferential search and indexing.

If the user has a preference to e.g. three attributes, we
end up with three different preference values (one for each
attribute). The overall preference value is obtained with
her global preference (aggregation). It is formally defined
as a function @• : [0, 1]n → [0, 1], which is monotone
in all arguments and @•(1, . . . , 1) = 1 must hold. One
possible aggregation function is a weighted average. The
weights indicate how much the corresponding attribute
is important for the user. If the user cares about price
and speed of the notebook more than about screen, her
aggregation function can be:

3 · CheapU1(x) + 2 · FastU1(x) + WidescreenU1(x)

6

The preference degrees for attributes price, speed and
screen and overall preference using the aggregation func-
tion above, are shown in Table 2. Notebook nb1 is the
most preferred because the weight related with Cheap is
quite high. If we used other weights, e.g. 1 for CheapU1,
1 for FastU1 and 2 for WidescreenU1, then nb1 would be
preferred to 0.67 and nb2 to 0.85. It is easy to see that
the weights (and more generally, the choice of aggregation
function) have a significant influence on the result.

Other possible aggregation functions are OWA operators
[5], and also fuzzy t-norms and t-conorms. Aggregation
can be viewed as a generalization of both fuzzy conjunc-
tion and fuzzy disjunction. It is also possible to represent
global preference with a set of rules learned from a rated
sample of objects [8].

• GoodNotebookU1(x) > 0.8 IF CheapU1(x) > 0.8 AND
FastU1(x) > 0.5

• GoodNotebookU1(x) > 0.7 IF CheapU1(x) > 0.6 AND
WidescreenU1(x) > 0.4 AND FastU1(x) > 0.5

Every rule consists of a head (e.g. GoodNotebookU1(x) >
0.8) and a body. The body is a conjunction of clauses like
CheapU1(x) > 0.8. If the conjunction is satisfied for some
object x, then it will be preferred at least in the degree
specified in the head of the rule. However, the object
can be preferred to a higher degree as well. If the object
satisfies more than one rule, its overall preference will be
maximum from the values specified in rule heads. For
example, consider the notebook nb1 from Table 2 – it has
local preferences CheapU1(nb1) = 1, FastU1(nb1) = 0.66,
WidescreenU1(nb1) = 0.5. It is easy to see that both
rule bodies above are satisfied. Thus both inequalities
GoodNotebookU1(nb1) > 0.8 and GoodNotebookU1(nb1) >
0.7 must hold. The overall preference will be 0.8, so both
inequalities are satisfied.

3. Scoring Description Logic s-EL(D)

Description logics (DLs) denote a group of formal lan-
guages for knowledge representation. Their main advan-
tage is the ability of reasoning, i.e. inference of the im-
plicit knowledge. The knowledge is represented with con-
cepts and roles. Concepts can be viewed as unary predi-
cates and roles as binary predicates, expressing the rela-
tionships within the domain. There are several descrip-
tion logics differing with their complexity and expressive
power. The difference is in the syntactic constructors al-
lowed to create new, complex concepts. The more con-
structors we allow, the more complex will the resulting DL
be. This also leads to a higher complexity of reasoning
tasks.

The language of our description logic s-EL(D) consists of
a set of atomic concept names NC , atomic role names NR,
individual names NI and constructors NK . DL knowledge
base K = (T ,A) consists of a TBox T and an ABox A.
The TBox contains all necessary definitions of complex
concepts. Every definition (TBox axiom) has the form
C ≡ D where C is a name of the new concept and D
is an expression made of simpler concepts and construc-
tors. This definition is treated as a logical equivalence.
ABox can use complex concept and role names defined
in the TBox to create assertions about individuals. We
distinguish role assertions R(a, b) and concept assertions
⟨C(a) ≥ t⟩, where t is a truth value. Thus the TBox con-
tains general knowledge and the ABox contains concrete
knowledge.

Complex concepts in the TBox are created from atomic
concepts according to special syntax rules using construc-
tors (see Table 3). DL s-EL(D) allows only two basic
constructors, concept conjunction C ⊓D and full existen-
tial restriction ∃R.C to create complex concepts. In Table
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Table 3: Syntax and semantics of s-EL(D)
Constructor Syntax Semantics

atomic concept A AI : ∆I → [0, 1]

role R RI ⊆ ∆I × ∆I

top concept ⊤ ⊤I = ∆I × 1

existential restriction ∃R.C (∃R.C)I (a) = sup{CI(b) : (a, b) ∈ RI}
existential restriction ∃u.P (∃u.P )I(a) = sup

b∈∆D
{P (b) : (a, b) ∈ uI}

concept conjunction C ⊓D (C ⊓D)I (a) = min{CI(a), DI(a)}

top-k constructor top-k(C) top-k(C)I(a) =

{
CI(a);

∣∣b ∈ ∆I : CI(a) < CI(b)
∣∣ < k

0; otherwise

aggregation @(C1, . . . , Cm) @(C1, . . . , Cm)I(a) = @•(CI
1 (a), . . . , CI

m(a))

3, A is an atomic concept name, C, D are complex con-
cept names, R is a role, u is a concrete role and a, b are
individuals.

The interpretation I consist of a non-empty domain ∆I

and an interpretation function •I . Table 3 shows that
the concepts are interpreted as fuzzy sets of individuals.
Roles, however, are interpreted as classical, crisp binary
relations. An interpretation I is a model of TBox defini-
tion C ≡ D iff ∀x ∈ ∆I : CI(x) = DI(x), ABox concept
assertion ⟨C(a) ≥ t⟩ iff CI(a) ≥ t and role assertions
R(a, b) iff (a, b) ∈ RI .

Apart from standard constructors ⊤, C ⊓ D and ∃R.C,
description logic s-EL(D) contains two new constructors,
namely aggregation @ and top-k. The latter is a special
modifier that leaves the first k membership values of the
concept C unchanged, but it sets all other values to 0.
Note that

∣∣b ∈ ∆I : CI(a) < CI(b)
∣∣ is a set of elements

preferred more than a. If this set contains at least k ele-
ments, then a is not among k most preferred individuals
according to the concept C.

If CI defines a strict ordering of the first k elements, i.e.
CI(a1) > · · · > CI(ak), then top-k(C) is unique. How-
ever, if we wanted to choose top-3(C) for CI(x) = 0.9;
CI(y) = 0.8; CI(z) = 0.7; CI(p) = 0.7; CI(q) = 0.6;
we could take the “strict” order either as (x, y, z, p, q) or
(x, y, p, z, q). So the top-three objects can be (x, y, z) as
well as (x, y, p). Note that top-k(C) from Table 3 includes
an element a if there are less than k elements that have
strictly greater membership value, which means including
all the ties.

Aggregation @ is a generalization of fuzzy conjunctions
and disjunctions, so it can be used as an alternative to
concept conjunction C ⊓ D. Aggregation functions are
m-ary fuzzy functions @•

U : [0, 1]m → [0, 1], monotone
in all arguments and such that @•

U (1, . . . , 1) = 1 and
@U (0, . . . , 0) = 0.

We use a fuzzy concrete domain D introduced by U. Strac-
cia [10], defined as D = (∆D, P redD). In our case, the
domain ∆D = R is a set of real numbers. If we need other
than numerical attribute values, we can easily extend the
concrete domain to contain other values as well (the com-
bination of multiple concrete domains is defined in [2]).
The set of fuzzy predicates PredD = {lta,b(x), rta,b(x),
trza,b,c,d(x), inva,b,c,d(x)} contains monotone and trape-
zoidal fuzzy sets (unary fuzzy predicates). The interpre-
tation of fuzzy predicates is fixed, handled by the concrete
domain.

xa b
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0

rta,b(x)

xa b

1

0

lta,b(x)

xa c

1

0

trza,b,c,d(x)

b d xa c

1

0

inva,b,c,d(x)

b d

Figure 5: Basic fuzzy sets as elements of the con-
crete domain D.

Figure 5 shows lta,b(x) (left trapezoidal membership func-
tion), rta,b(x) (right trapezoidal), trza,b,c,d(x) (trapezoi-
dal) and inva,b,c,d(x) (inverse trapezoidal) with one vari-
able x and parameters a, b, c, d. Note that the parameters
influence the shape of the membership function to match
user’s attribute preference exactly. The membership func-
tion Cheap from Figure 1 would be defined as lt400,700 be-
cause the function is left trapezoidal (i.e. non-increasing),
all prices below 400 have a membership value 1 and all
prices above 700 have a membership value 0. The param-
eters can be chosen arbitrarily, but they must be fixed
for a concrete predicate. Note that the parameters are
subjective for an individual user U, so that different users
would have different parameters. In case of complex pref-
erential concepts, we add a user identifier like U1 to the
subscript, e.g. CheapU1.

If we want to associate a fuzzy predicate with some role,
i.e. to say that lt400,700 contains only the values of price,
we can use a special case of existential restriction ∃u.P
(e.g. ∃price.lt400,700). It is similar to ∃R.C, but P ∈
PredD is a concrete predicate and u is a concrete role.

4. Subsumption Problem and Instance Problem
in s-EL(D)

We have already mentioned that the main advantage of
DLs is automated reasoning. One of the most commom
reasoning problems is called subsumption problem – a con-
cept C is subsumed by D with respect to a TBox T ,
C ⊑T D, if for every model I of T and every individual
a ∈ ∆I holds CI(a) ≤ DI(a). The subsumption problem
in s-EL(D) can be decided with a structural algorithm,
similar to the algorithm proposed in [9], by finding homo-
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morphism between description trees for concepts D and
C. In the following text, we present our own structural
algorithms, extended from [9] to handle fuzzy predicates.
Note that the algorithms use a subset of s-EL(D) with-
out aggregations and top-k constructor. Let us begin with
some definitions from graph theory.

Definition 1. Let G = (V,E) and G′ = (V ′, E′) be
graphs. A homomorphism from G to G′ is a mapping
ϕ : V → V ′ such that ∀(u, v) ∈ E : (ϕ(u), ϕ(v)) ∈ E′.

We also need the ability to attach a label to any vertex
or edge. Thus we will use labeled graphs:

Definition 2. A labeled graph is defined as a triple
G = (V,E, l), where (V,E) is a directed graph and l is
a labeling function l : V ∪ E → L for some set of labels
L. For every x ∈ V ∪ E, the element l(x) ∈ L is called
the label of x. A labeled tree is a connected labeled graph
without cycles.

It is possible to represent an EL concept as a labeled tree
[9]. If the concept is atomic, it will be represented with
a single vertex, labeled with the concept name. Com-
plex concepts are treated differently – at first we need
to rewrite the concept C into an equivalent normal form
C ≡ D1 ⊓ · · · ⊓ Dn ⊓ ∃R1.C1 ⊓ · · · ⊓ ∃Rm.Cm where Di

denotes an atomic concept and Ci can be either a com-
plex concept in the normal form or a conjunction of con-
crete domain predicates (if Ri is a concrete role). Roles
R1, . . . , Rm must be distinct. This transformation can be
done using commutativity of conjunctions and the fact
that ∃R.(C ⊓ D) ≡ (∃R.C) ⊓ (∃R.D). Subsequently, we
can create the tree: concepts D1, . . . , Dn will form a label
of a vertex v0 and we create a new edge labeled with Ri

for every ∃Ri.Ci. The edge is oriented from the v0 to a
new vertex obtained recursively from Ci. If Ci is a con-
junction of concrete domain predicates, the label will be
a set of predicate names.

Definition 3. A s-EL(D) description tree is defined
as a labeled tree G = (V,E, l), where the labeling function
maps every vertex v ∈ V either to a subset of atomic
concept names or a subset of concrete predicates l(v) ⊂
NC ∪PredD. Every edge e ∈ E is mapped to a role name
v(e) ∈ NR.

Concrete domain predicates (like lta,b, rta,b, trza,b,c,d,
inva,b,c,d) are allowed to occur only as a part of ∃R.P in
complex concept descriptions, where R is a concrete role
and P is a concrete predicate. Thus the normal from can
also contain a conjunction of concrete predicates. How-
ever, concrete predicates cannot occur in the same con-
junction with concept names. We can solve these two
cases separately.

Crisp subsumption between two fuzzy concepts C and D
can be checked by creating a s-EL(D) description tree
for each concept (let us denote them G(C) and G(D))
and searching for a homomorphism from G(D) to G(C).
Because s-EL(D) trees are labeled, the homomorphism
must match edges with identical labels. If a vertex v
is labeled with concept names, it must be mapped to a

vertex v′ labeled with a superset of the concept names
in l(v) (so that the first concept is more general). On
the other hand, if v, v′ are labeled with predicate names,
we must check if the conjunction of predicates from l(v)
is more general than the conjunction of l(v′). If such
homomorphism is found, the concept D is more general
than C, thus the subsumption C ⊑T D holds.

Definition 4. Let G(D) = (VD, ED, lD) and G(C) =
(VC , EC , lC) be s-EL(D) description trees for concepts D
and C, respectively. A mapping ϕ : VD → VC is a sub-
sumption-homomorphism from G(D) to G(C) iff all of the
following conditions are satisfied:

1. if v0 is a root of G(D) and w0 is a root of G(C),
then ϕ(v0) = w0,

2. lD(v) ⊆ lC(ϕ(v)) for every vertex v ∈ VD which is
labeled with concept names (lD(v) ⊆ NC),

3. (
∧• lC(ϕ(v)))(x) ≤ (

∧• lD(v))(x) for every x ∈ D
and for every vertex v ∈ VD which is labeled with
concrete predicate names (lD(v) ⊆ PredD),

4. (ϕ(v), ϕ(w)) ∈ EC for every edge (v, w) ∈ ED and
the labels are the same lD(v, w) = lC(ϕ(v), ϕ(w)).

Baader, Küsters and Molitor [3] showed that the homo-
morphism can be found in polynomial time for crisp EL.
The only substantial difference in our subsumption algo-
rithm is the presence of concrete predicates. Note that the
definition uses a “big operator” notation of Gödel fuzzy
conjunction

∧•. The expression
∧• lD(v) is a fuzzy con-

junction of concrete predicates that occur in the label of
v and

∧• lC(ϕ(v)) is a fuzzy conjunction of predicates in
the label of ϕ(v). Condition 3 in fact requires a crisp
subsumption between

∧• lC(ϕ(v)) and
∧• lD(v). Now we

need a method to decide subsumption between two con-
junctions of concrete predicates in polynomial time.

Let
∧• lC(ϕ(v)) be P1 ∧ · · · ∧ Pm and let

∧• lD(v) be
Pm+1 ∧ · · · ∧Pm+n, where P1, . . . , Pm, Pm+1, . . . , Pm+n ∈
PredD are arbitrary concrete domain predicates in the
form lta,b, rta,b, trza,b,c,d or inva,b,c,d. Every Pi has pa-
rameters a, b or a, b, c, d that specify points from the con-
crete domain. The membership function is linear between
these endpoints (see Figure 5). Tables 4 and 5 show how
we determine the membership value on different subinter-
vals.

Table 4: Membership values for left-trapezoidal
and right-trapezoidal type.

predicate (−∞, a] [a, b] [b,∞)

lta,b 1 b−x
b−a

0

rta,b 0 x−a
b−a

1

Table 5: Membership values for trapezoidal and
inverse trapezoidal type.

predicate (−∞, a] [a, b] [b, c] [c, d] [d,∞)

trza,b,c,d 0 x−a
b−a

1 d−x
d−c

0

inva,b,c,d 1 b−x
b−a

0 x−c
d−c

1

If we use Gödel t-norm, fuzzy conjunction is a minimum
of fuzzy values of all the conjuncts. The resulting fuzzy
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predicate is also defined by a function, which is piece-
wise linear on subintervals of the domain. The endpoints
of the subintervals can be chosen from the parameters
a, b or a, b, c, d of the original predicates, or from the in-
tersections of the increasing or decreasing parts of the
membership functions. Figure 6 shows the conjunction
(thick black line) of a trapezoidal and an inverse trape-
zoidal predicate (gray lines). Thin dashed lines mark the
parameters a, b, c, d and the dotted lines mark the inter-
sections. It is easy to see that if we partition the do-
main into all possible subintervals (using all parameters
and intersections), we only need to choose a function for-
mula according to Table 4 or Table 5 for each predicate in
the subinterval, substitute arbitrary value from the open
subinterval for x and compare the results. Thus we obtain
the function formulas for the conjunction.

1.0

0.0

inv trza ,b ,c ,d1 1 1 1 a ,b ,c ,d2 2 2 2

a2 a1 b2 b1
c2 c1 d2 d1

i1 i2

Figure 6: A conjunction of a trapezoidal and an
inverse trapezoidal predicate.

If we want to find a conjunction of the fuzzy predicates
from Figure 6, we need to check the intervals (−∞, a2],
[a2, a1], [a1, i1], [i1, b2], [b2, b1], [b1, c2], [c2, c1], [c1, i2],
[i2, d2], [d2, d1], [d1,∞). Let us take interval [a1, i1] as an
example. Since it is a subinterval of [a1, b1], the first pred-
icate inva1,b1,c1,d1 is defined by the formula b1−x

b1−a1
(see Ta-

ble 5). It is also a subinterval of [a2, b2], so trza2,b2,c2,d2

is defined as x−a2
b2−a2

. After substituting any value from

[a1, i1] for x, we find out that b1−x
b1−a1

≥ x−a2
b2−a2

(note that

all the parameters would be numbers in a real example).
Thus the conjunction is defined by a formula x−a2

b2−a2
on

the interval [a1, i1]. Some of the subintervals will have
the same formula in the result, so they can be unified
(like [a2, a1] and [a1, i1] on Figure 6).

The last part of the algorithm is to check crisp subsump-
tion between two conjunctions of fuzzy predicates. We
take all subinterval endpoints from both conjunctions.
Then we check the condition (P1∧· · ·∧Pm)(x) ≤ (Pm+1∧
· · · ∧ Pm+n)(x) for every x in the subintervals. If we find
any intersection inside a subinterval, we can stop, because
the condition could not be satisfied. Otherwise we sub-
stitute a point from the subinterval for x and check if the
first membership function has lower values than the sec-
ond function. If the inequality is checked successfully for
all subintervals, then the crisp subsumption relationship
holds.

Every predicate has at most 4 parameters (a, b, c, d), so
we gain 4m interval endpoints for m predicates in a con-
junction. Moreover, we have to add the number of in-
tersections, which is bounded by 2(m2 − m) (there are
1
2
(m2 − m) possible pairs of predicates, every predicate

membership function has at most two strictly monotonic
parts, so we have to check four intersections for every pair
of predicates). Thus we have at most 2m2 + 2m + 1 in-
tervals. Then we check m function formulas to find the

minimum (the substitution and comparison needs only
constant time for each function). Thus the algorithm for
finding the conjunction of m fuzzy predicates has a com-
plexity O(m3).

The s-EL(D) description trees also help to answer the
question to which degree an individual a is an instance
of a concept C. In addition to description trees, we also
need a graph structure to represent assertions from the
ABox. Such structure will be called s-EL(D) description
graph.

Definition 5. A s-EL(D) description graph is defined
as a labeled graph G = (V,E, l), where the labeling func-
tion maps every vertex v ∈ V either to a fuzzy subset
of atomic concept names or to a concrete value l : V →
NC × [0, 1] ∪ D. Every edge e ∈ E is mapped to a role
name v(e) ∈ NR.

A s-EL(D) description graph can be created from an ABox
the following way:

1. We replace complex concept names with their def-
initions, so that the ABox contains only assertions
with atomic concepts. This means that we replace
⟨(C ⊓ D)(a) ≥ t⟩ with ⟨C(a) ≥ t⟩ and ⟨D(a) ≥
t⟩. The assertion ⟨(∃R.C)(a) ≥ t⟩ is replaced with
R(a, d) and ⟨C(d) ≥ t⟩ where d is a new individual
name. The ABox obtained this way is equivalent to
the original ABox (i.e. it is satisfied by the same
models).

2. We define a set nodes(a) = {(C, t)| ⟨C(a) ≥ t⟩ ∈ A}
for every individual a occurring in the ABox.

3. If (C, t1) ∈ nodes(a) and (C, t2) ∈ nodes(a) at the
same time and t1 ≥ t2, we remove the element
(C, t2).

4. We create a new vertex labeled nodes(a) for every
individual a from the ABox.

5. We also create a new vertex for every concrete value
occurring in the ABox. The label is identical with
the concrete value.

6. For every abstract role assertion R(a, b) from the
ABox we create a new edge labeled with R from
nodes(a) to nodes(b).

7. For every concrete role assertion u(a, b) we create a
new edge labeled with R from nodes(a) to b.

To check the instance problem, it is sufficient to create
a s-EL(D) description tree of a concept C, a s-EL(D)
description graph for ABox A and try to find a suitable
homomorphism ϕ and an evaluation eϕ. If such ϕ and eϕ
exist, then the individual is an instance of the concept C
to a degree eϕ(v0), where v0 is the root of the description
tree. Otherwise the degree is 0.

Definition 6. Let H = (VH , EH , lH) be a s-EL(D)
description graph for an ABox A, let G = (VG, EG, lG)
be a s-EL(D) description tree for a concept C and let
a be arbitrary, but fixed individual. Then an instance-
homomorphism ϕ : VG → VH is a mapping such that:
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1. for every vertex v ∈ VG and every concept C ∈ lG(v)
there exists (C, n) ∈ lH(ϕ(v)),

2. for every edge (v, w) ∈ EG holds (ϕ(v), ϕ(w)) ∈ EH

and moreover the labels remain the same lG(v, w) =
lH(ϕ(v), ϕ(w))

3. if v0 is a root of G, then ϕ(v0) = a.

Definition 7. Let G = (VG, EG, lG) be a s-EL(D) de-
scription tree for a concept C, let H = (VH , EH , lH) be
a s-EL(D) description graph for an ABox A and let ϕ be
an instance-homomorphism from VG to VH . Let ∧G be
an infix notation of Gödel conjunction. An evaluation is
a function eϕ : VG → [0, 1] defined by induction from the
leaves of the description tree:

1. for every leaf v ∈ VG which is labeled with concept
names lG(v) = {C1, . . . , Cn} the evaluation is de-
fined eϕ(v) = C1(ϕ(v)) ∧G · · · ∧G Cn(ϕ(v)), where
Ci(ϕ(v)) = t if (Ci, t) ∈ nodes(v), 0 otherwise.

2. for every leaf v ∈ VG which is labeled with concrete
predicate names lG(v) = {P1, . . . , Pn} the evalua-
tion is eϕ(v) = P1(ϕ(v)) ∧G · · · ∧G Pn(ϕ(v)), where
Pi(ϕ(v)) is determined by the concrete domain

3. for any other vertex w ∈ VG, lG(w) = {C1, . . . , Cn}
there are successors u1, . . . , um. The evaluation is
defined eϕ(w) = C1(ϕ(w)) ∧G · · · ∧G Cn(ϕ(w)) ∧G

eϕ(u1) ∧G · · · ∧G eϕ(um), where Ci(ϕ(w)) = t if
(Ci, t) ∈ nodes(w), 0 otherwise.

The paper [9] proves that the existence of the homomor-
phism can be checked in a polynomial time. We extended
the algorithm with removing complex concepts from the
ABox, computing nodes(a) and the evaluation, which can
be done in polynomial time. Therefore our algorithm also
finishes in polynomial time.

5. Description Logic o-EL(D) with Preorders
Compared to other fuzzified DLs, s-EL(D) defined in the
previous section uses fuzzy membership values to repre-
sent the notion of preference, not vagueness. Every pref-
erence concept in s-EL(D) orders all the individuals from
the domain according to their preference values. Conjunc-
tions or aggregations are necessary to obtain the over-
all order. This principle is similar to the rules of de-
cathlon: athletes compete in ten disciplines, each disci-
pline is awarded according to scoring tables. All scores
are summed up to determine the final order. This is the
case when all precise scores are important to determine
the final score.

There are other cases when the score itself is not impor-
tant, only the order. Recall another example from sport,
namely from Formula 1 car racing: the first ten drivers
gain points according to the point table (25, 18, 15, 12,
10, 8, 6, 4, 2, 1) regardless of their exact time, speed or
headstart. The final order is also determined by summing
up all points. A similar system is used in Tour de France,
where riders can earn points at the end of each stage. The
stages are divided into several types (flat, medium moun-
tain, high mountain) and each type has its own point
table. It is possible to gain extra points for winning time
trials and sprints. These examples show that sometimes

we can neglect the membership values and to consider
only the order of individuals.

Since preference is defined as an ordering of objects, we
will interpret the preference concepts as ordering of the
domain. Such description logic will be denoted o-EL(D)
where o stands for“order”(preliminary versions of this DL
were published in [11, 13, 12]). This approach is original
and does not appear elsewhere, in contrast to fuzzified
DLs which are very popular in DL community.

Every concept in o-EL(D) is interpreted as a non-strict
preorder of the domain. A preorder is a reflexive and
transitive relation. We do not require the antisymmetry
condition (as is required for partial orders) because there
can be two individuals that are not identical despite being
equally preferred. We call such individuals indiscernible
according to the preference concept C. A preorder is total
if for every pair of distinct individuals a, b holds a ≤ b or
b ≤ a.

To emphasize that o-EL(D) concepts are preorders, we
will write them as ≤C and we will sometimes use the infix
notation a ≤J

C b instead of ≤J
C (a, b) for atomic concepts.

Interpretations in o-EL(D) will be denoted J = (∆J , •J )
to be clearly distinguished from the interpretations in s-
EL(D). The interpretation domain ∆J is identical, the
difference is only in the interpretation function •J . If
a ≤J

C b, we say that a belongs to a concept ≤C less
or equal than b. (If ≤C represents user preference, we
say that b is preferred to a (or equally) according to ≤C .
Complex concepts in o-EL(D) are constructed according
to Table 6 (compare with Table 3). Note that roles are
crisp and their interpretation is the same as for s-EL(D).
Also note that lowercase letters in Table 6 denote individ-
uals, except for u which denotes a concrete role. ≤C ,≤D

stand for concepts, R stands for a role and P for a con-
crete predicate.

We use the same concrete domain as in case of s-EL(D).
Typical TBox definitions are ≤C≡≤D. ABox concept as-
sertions have the form a1 ≤C a2 or ≤C(a1, a2) and role
assertions R(a, c).

An interpretation J is a model of the TBox definition
≤C≡≤D if the two preorders are equal ≤J

C=≤J
D. A model

of role assertions R(a, b) is defined exactly as in s-EL(D),
while J is a model of a concept assertion a1 ≤C a2 if
(a1, a2) ∈≤J

C .

If an individual a is preferred to b in two order concepts
≤C and ≤D, the same relationship will hold in the con-
cept conjunction ≤C ⊓ ≤D. The main disadvantage is
that the concept conjunction often produces a partial pre-
order, even if ≤C and ≤D are total preorders. According
to the order-extension principle, it is possible to extend
(≤C ⊓ ≤D)J to a total preorder, but this extension does
not have to be unique. The extension is trivial for finite
domains and it is also possible for infinite domains us-
ing the axiom of choice. However, sometimes it is more
convenient to use aggregation @U instead of concept con-
junction, especially when we consider a conjunction of
more than two concepts.

The semantics of ∃R.≤C is very unusual at the first sight,
so we will explain it with help of s-EL(D). Let s-EL(D)
knowledge base contain the following assertions:
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Table 6: Concept constructors in o-EL(D)
Syntax Semantics

≤A ≤J
A⊆ ∆J × ∆J

R RJ ⊆ ∆J × ∆J

≤⊤ ∆J × ∆J

∃R.≤C {(a1, a2) : ∀c1 (a1, c1) ∈ RJ ∃c2 (a2, c2) ∈ RJ : c1 ≤J
C c2}

∃u.P {(a1, a2) : ∀c1 (a1, c1) ∈ uJ ∃c2 (a2, c2) ∈ uJ : P (c1) ≤ P (c2)}
≤C ⊓ ≤D {(a1, a2) : a1 ≤J

C a2 ∧ a1 ≤J
D a2}

@U (≤C1 , . . . ,≤Cm) @•
U (≤C1 , . . . ,≤Cm)

top-k(≤C) defined below

⟨C(c1) ≥ 0.8⟩
⟨C(c2) ≥ 0.3⟩
R(a1, c1)

R(a1, c2)

⟨C(c3) ≥ 0.5⟩
⟨C(c4) ≥ 0.6⟩
⟨C(c5) ≥ 0.6⟩
R(a2, c3)

R(a2, c4)

R(a2, c5)
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Figure 7: A graphical representation of s-EL(D)
knowledge base.

The same knowledge base is shown on Figure 7. Note
that membership degrees of different individuals in C are
indicated by their vertical position – the individual c1
with the highest membership degree 0.8 is on the top.
Role assertions are indicated with the arcs, as is usual in
ontology visualization.

If we want to find a membership degree of the individ-
ual a1 in ∃R.C, it is sufficient to find a supremum from
CI(c1), CI(c2) and analogously a supremum from CI(c3),
CI(c4), CI(c5) for the individual a2. We find out that
a1 must belong to ∃R.C to a degree at least 0.8 in ev-
ery model, while a2 has a degree at least 0.6. Note that
the supremum is usual in the interpretation of existential
quantifier in all papers concerning fuzzy DLs, regardless
of whether they use crisp or fuzzy roles. It also affects
the properties of fuzzy ∃R.C: if a1 has a higher degree of
membership than a2, we know that for every individual
ci connected with a2 via role R, there exists a better in-
dividual cj connected with a1 (better with respect to the
preference concept C). This feature of fuzzy existential
quantifier is used in our interpretation of ∃R.C in order
description logic o-EL(D).

Figure 8 shows the analogous knowledge base for o-EL(D).
Instead of fuzzy membership degrees, we have only the
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Figure 8: A graphical representation of analogous
o-EL(D) knowledge base.

preorder relation to work with. The interpretation of
∃R.≤C will be a preorder as well, so the definition must
specify which pairs of individuals will belong to it. The
pairs (a1, a2) have to fulfill the condition ∀c1 (a1, c1) ∈
RJ ∃c2 (a2, c2) ∈ RJ : c1 ≤J

C c2, which is just a formal-
ization of the condition stated above: for every individual
ci connected with a2 via role R, there exists a better in-
dividual cj connected with a1.

Also note that if the concept ≤C was a total preorder,
then ∃R.≤C will be also total. If the knowledge base
contains two role assertions R(a1, b1) and R(a2, b2), then
their order in the concept ∃R.≤C is the same as in ≤C

(which is total, so it contains either the pair (a1, a2), or
(a2, a1), or both). If the knowledge base contains only
R(a1, c1) and no such assertion for a2 then for every in-
dividual connected with a2 via role R (which is none in
our case), there exists a better individual c1 connected
with a1, so the pair (a2, a1) clearly belongs to ∃R.≤C ac-
cording to the definition. If there are no role assertions
for a1 and a2, then both (a1, a2) and (a2, a1) fulfill the
condition from the definition and so both pairs belong to
∃R.≤C . Thus all individuals that have role assertions
are ordered according to ≤C and all other individuals
share the lowest level of ∃R.≤C . A similar principle was
used in the definition s-EL(D) – if some individual a did
not occur in role assertions with R, then the supremum
sup{CI(b) : (a, b) ∈ RI} had to be chosen from an empty
set and sup ∅ was defined to be 0. The individual a would
have the lowest possible membership value in ∃R.C.

For every @U with arity m and for every m-tuple of or-
der concepts ≤Cj⊆ ∆J × ∆J an aggregation @•

U (≤C1

, . . . ,≤Cm)J ⊆ ∆J × ∆J is a preorder such that the fol-
lowing holds: if a ≤J

Cj
b for every j = 1, . . . ,m, then

(a, b) ∈ @•
U (≤C1 , . . . ,≤Cm)J .

There are many possibilities to define aggregation @•
U .

We will show one possibility inspired by Formula 1 car
race point tables mentioned before. First of all, it is nec-
essary to define the level of an individual a in the inter-
pretation of a concept C. It is the biggest possible length



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 2, No. 2 (2010) 137-148 145

of a sequence such that the first element is a and every
following element is strictly greater than its predecessor.

level(a,≤J
C ) = max

l∈N
{l : ∃b1, . . . , bl ∈ ∆J ∀i ∈ {1, . . . , l −

1} : bi ≤J
C bi+1 ∧ bi+1 ̸≤J

C bi ∧ b1 = a}

Next we define a point table for a concept ≤C and user
U. A point table is a non-increasing function over natural
numbers pointU≤C

: N → N with values like 10, 8, 6, 5, 4, 3,
2, 1, 0, 0, . . . ending with zeros. The differences between
adjacent values are non-increasing. A pair (a, b) belongs
to aggregation @•

U (≤C1 , . . . ,≤Cm)J if

m∑
j=1

pointU≤Cj
(level(a,≤J

C )) ≤
m∑

j=1

pointU≤Cj
(level(b,≤J

C )).

This means finding the level of individual a in every pref-
erence concept ≤J

Cj
, then determining the corresponding

points for these levels and sum up all the points. If the
individual b has better levels in the preference concepts
≤J

Cj
than individual a, it will also have more points in

pointU≤Cj
.

It is also straightforward to define top-k queries. Let Ca =
{c ∈ ∆J : a ≤J

C c ∧ c ̸≤J
C a} be a set of individuals

strictly greater than a in ordering concept ≤C . Then
(a, b) ∈ top-k(≤C)J , iff:

1. a ≤J
C b ∧ |Ca| < k or

2. |Ca| ≥ k

If ≤C was a total preorder, then top-k(≤C) will be also
total. Top-k constructor preserves the original order of
the first k individuals, including the ties. Note that the
first k individuals often occupy less than k levels because
some of them are ties. Concerning the ties on the last in-
cluded level (not necessarily the k-th level), we can either
choose only some of them to fill up the needed amount
of elements, or we can return them all. Here we choose
the latter possibility, even if we end up with more than
k elements in the result, because it makes our definition
deterministic. If some element a has more than k strictly
greater elements in ≤J

C , so that it is beyond the last in-
cluded level (see condition 2), it is made lower or equal
to all other elements, which moves it to the last level in
top-k(≤C)J .

5.1 Order-Oriented Reasoning
Interpreting concepts as preorder relations has one main
drawback – it complicates the reasoning. The relation-
ship between various concept (or role) constructors and
the complexity of reasoning is well explored in descrip-
tion logics. Reasoning with complex roles is known to be
more time-consuming than reasoning in a DL with con-
cept constructors only [1]. Because concepts in o-EL(D)
are also binary relations, we can expect the reasoning to
have higher complexity than the polynomial complexity
in s-EL(D).

Some reasoning algorithms for o-EL can be designed by
modification of structural or tableaux approaches from
classical DLs. There is one more complication – the use
of aggregation functions may easily cause undecidability
of reasoning. Paper [4] proves decidability only for EL(D)

with atomic negation and a concrete domain D with func-
tions min, max, sum. Although aggregation functions are
more suitable to represent user preferences, we replace
them with concept conjunctions for the purpose of rea-
soning. We also leave out top-k constructor which will be
used only in top-k queries [6]. In this section we focus on
instance order problem – to find out if a ≤J

C b holds for
every model J of the knowledge base.

At first we construct the expansion and the transitive clo-
sure of an ABox A:

1. add a ≤C b (the assertion that we want to check)

2. replace all complex concept names in A with their
definitions

3. if a ≤C b ∈ A and b ≤C c ∈ A and a ≤C c /∈ A,
then add a ≤C c

Afterwards we decompose A by applying rules. Every
rule replaces some ABox assertion with new assertions or
constraints. New assertions are allowed to contain vari-
ables instead of individual names. Constraints have the
form P (x, y), where x, y can be values from the concrete
domain or variables and P is a concrete predicate. The
rule R∃ can be used for both abstract and concrete roles.

Table 7: Replacement rules for o-EL(D) ABoxes.
Rule Original assertions Replace with

R⊓ (≤C ⊓ ≤D)J (a1, a2) a1 ≤J
C a2 and a1 ≤J

D a2

R∃ (∃R. ≤C)J (a1, a2) RJ (a2, x) and c1 ≤J
C x

for all c1 such that
(a1, c1) ∈ RJ where
x is a new variable

After no more rules can be applied on ABox A, we end up
with constraints like P (x1, x2) and assertions of the form
x3 ≤C x4 and R(x5, x6). As the next step we try to sub-
stitute individuals and concrete values for the variables so
that all constraints and assertions are fulfilled. For each
variable x and role R we create a set of candidate values
CV (x,R) = {y ∈ ∆J ∪ ∆D : R(a, y) ∈ A ∧ y ̸= x}. We
have to choose one value from each candidate set such
that no predicate assertion P (x, y) is violated. If there is
such a substitution, then a ≤J

C b for every model J . If
not, a ≤J

C b may hold only for some models. A substi-
tution can be found with bMIP (bounded mixed integer
programming) method described in [10].

6. The Relationship between Scoring and Or-
dering Approach

Definitions for s-EL(D) and o-EL(D) are much similar,
but the two logics are not equivalent. At the first sight,
it is obvious that o-EL(D) drops exact membership de-
grees, thus it loses the ability to express some features of
s-EL(D). If we have a “constant” fuzzy concept CI(a) =
w ∈ TVn for every a ∈ ∆I , the corresponding order con-
cept in o-EL(D) will be ≤J

C = ∆J ×∆J , regardless of the
value w. Similarly, if DI(a) ≤ DI(b), the corresponding
order concept contains the pair (a, b) ∈≤J

D, but we lose
information about the difference DI(b) −DI(a).

If we compare a scoring concept C with an ordering con-
cept ≤C , we are concerned about the order of individu-
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als. It is straightforward to define corresponding order-
preserving concept ≤A for every primitive concept A and
for any interpretation AI . We define a ≤J

A b iff AI(a) ≤
AI(b). Concept constructors should also preserve order
of individuals. We start from a scoring concept A, trans-
form it to a corresponding ordering concept ≤A, use corre-
sponding constructors on both concepts and finally com-
pare order of individuals in the results.

Definition 8. Let C be a s-EL(D) concept, ≤C a o-
EL(D) concept. We say that ≤C is generated by C if the
following holds in all interpretations I,J : ∀a, b ∈ ∆I :
a ≤J

C b iff CI(a) ≤ CI(b).

Note that the concrete domain D is already defined in
such a way that ∃u.P is order-preserving. In addition,
the following properties of the concept constructors can
be proved:

Theorem 1. Let ≤C be generated by C. Then ∃R. ≤C

is generated by ∃R.C.

Theorem 2. Let ≤C be generated by C. Then top-
k(≤C) is generated by top-k(C).

The constructor ≤C ⊓ ≤D produces partial preorders.
Because of the minimum function in (C ⊓D)I , we cannot
model this constructor exactly in o-EL(D). There is no
way of comparing elements without fuzzy degrees in two
different preorders.

Theorem 3. Let ≤C be generated by C and ≤D be gen-
erated by D. Then ≤C ⊓ ≤D can be extended to a total
preorder which is generated C ⊓D.

Note that aggregations are defined differently for o-EL(D)
and s-EL(D), so we cannot claim such a strong relation-
ship between them. The main problem is that we neglect
the exact membership values and we only keep the or-
der of individuals as we move from s-EL(D) to o-EL(D).
Our aggregations are defined in a rather universal way
that allows us to adjust them according to our needs (we
can set the weights in s-EL(D) and the point tables in o-
EL(D)). Thus if we want scoring and order aggregations
to correspond, we have to set the weights and point tables
properly.

Theorem 4. Let ≤C1 , . . . ,≤Cm be o-EL(D) concepts
generated by C1, . . . , Cm. For every s-EL(D) aggregation
@U with weights w1, . . . , wm there exists an o-EL(D) ag-
gregation @′

U such that @′
U (≤C1 , . . . ,≤Cm) is generated

by @U (C1, . . . , Cm).

Note that if the domain ∆J is changed (some elements
are added or removed), this relationship does not have to
hold anymore. This lemma shows that the point tables
use similar principles as in scoring DLs.

7. Implementation
Our fuzzy preference model was implemented within a
system for preferential search [7]. The system is named
Kore2 and it consists of three main software tools imple-
mented in Java – acquiring and managing user prefer-
ences (UPreA), preferential top-k search (top-k, see [6])
and learning user preference from rated objects (IGAP
[8]). Figure 9 shows the functionality of the system. As
the first step, the user can select relevant attributes and
specify her attribute preferences. These preferences are
used in top-k search (step 1) and a sorted list of results
R0 is returned. The user can rate the results in a 5-degree
scale (step 2), thus creating a rated list U0. It is used as
an input for preference learning tool IGAP and the search
is performed with new preferences. This process can be
repeated a few times until the user is content with the
results. Every set of rated objects can help to refine the
user preferences.

Explicit specification
of user preference

User ratings
of objects

Learning global
preferences

Relevant
object search

1

2

3

4

User
profile
data

Domain
data

R0

U , U0 1

R , R1 2

Figure 9: Overview of the preferential search sys-
tem Kore.

7.1 UPreA: The Acquisition of User Preference
We need the user to specify which attribute values are
preferred and to what degree, and moreover the user has
to do this for every attribute that she wants to be con-
sidered. Thus our interface has to be intuitive and simple
enough not to discourage and dismay users. We tested
several versions of GUI components until we decided to
use sliders an palettes (Figure 10).

We divided the process of specifying user preferences into
two subsequent forms. The first form shows only one
slider for every attribute and these sliders serve to specify
the weights. The second form contains either a slider or
a palette for every attribute selected by the user. Those
attributes that were marked as “not important” on the
first screen are left out.

The sliders on the second form represent ordinal attributes
and they show all possible (ordered) attribute values. In
case of the attribute screen, the user chose the value 17”
which means that the corresponding fuzzy set has a non-
decreasing membership function and the value 17” is the
most preferred. Thus we obtain only a simplified model
of user preference – the selected value is preferred to 1.0,

2Kore is available online at http://x64.ics.upjs.sk:
8080/kore/
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Figure 10: The third version of user interface with sliders and palettes.

while other values have evenly decreasing membership de-
grees. This approach means hiding the complexity of the
model from users. It is similar to any standard search sys-
tem, where the user is allowed to select only one preferred
value for each attribute. Despite this simplification, our
system is still able to order objects by their preference
degrees and also retrieves objects with values close to the
selected value.

Nominal attributes are handled with a component called
palette. The list on the left side contains available at-
tribute values, while the list on the right contains values
selected by the user. It is possible to move values from
left to right and vice versa using the buttons in the mid-
dle. Selected values can be ordered using the buttons with
arrows pointing up and down. Then the system automat-
ically creates a fuzzy set where the first selected value is
preferred to a degree 1.0 and the preference degrees of
the following values evenly decrease. Again, we hide the
inner complexity of our model from the user and we just
require the user to select her preferred values.

The GUI is implemented within Wicket framework. We
added a new specialized slider component for wicket, us-
ing a freeware Javascript code by E. Khmelev3. We en-
hanced the slider component with new functions like auto-
matic setting of the“step”value (i.e. how will the selected
value change if we move the indicator by 1 pixel) and a
“snap to ticks” feature for attributes with a finite number
of possible values. Thus the slider in the implementation
behaves differently for continuous attributes like price

(the slider can be moved arbitrarily, the selected value
is shown on a flag above the indicator) and for discrete
attributes like screen (possible values are shown by the
ticks below the slider, the indicator will snap to the closest
tick after moving).

7.2 Evaluation
The implementation was tested by real users who looked
for the ideal objects in the domain of job offers and rated
the results in five different grades to refine their search.
The experiments involved 136 different users who rated
more than 500 sets of results. Some users rated the results
only once, but others went through several cycles (see

3http://blog.egorkhmelev.com/2009/11/
jquery-slider-safari-style/

Figure 9 for the illustration of cycles). We analyzed the
first five cycles for each user, which cover the major part
of our experimental results.

Now we are interested in the correlation of Ri and Ui,
i.e. the correlation of the order defined by the search
tool and by the user. If the correlation is high, then
our preference model resembles real user preference. We
used five different measures to determine the similarity
of two ordered lists. The first is called τ -correlation,
τ(≤1,≤2) = 2D

1
2
·n·(n−1)

− 1, where D is a number of dis-

cordant pairs in both orders (i.e. such pairs (a, b) that
a ≤1 b and b ≤2 a) and C is the number of concordant
pairs. The second is a modification of τ -correlation called
weighted order similarity – we choose a decreasing vector
of weights such that differences between adjacent values
are also decreasing, e.g. w = (20, 15, 11, 8, 6, 5, 4, 3, 2, 1)
for n = 10. Weighted order coefficient is then defined

as W = 1 −
n∑

j=1

∣∣wpj − wqj

∣∣ where pj is a sequence num-

ber of Ri
j and qj is a sequence number of U i

j . Other three
measures are Gödel,  Lukasiewicz and product fuzzy equal-
ity ≡•

G (C1, C2) = infx∈∆{(C1 →• C2) ∨• (C2 →• C1)},
which means that C1, C2 are equal if C1(x) implies C2(x)
and vice versa, for all x from the domain.

Finally, we compare results of these fuzzy measures on
Fig. 11. τ -correlation and weighted similarity seem to
be the most suitable measures. Fuzzy equalities impose
too strict conditions on fuzzy values. We do not expect
result lists and user ratings to be totally equal because
we learn new preferences from their difference. Correla-
tion increases most significantly between the first and the
second cycle where we start to use fuzzy rules. So experi-
ments proved that fuzzy rules are suitable representation
of user preference.

Another interesting point is that τ -correlation and weigh-
ted similarity have the same trends up to fifth cycle, while
all fuzzy equalities have the same trends from second to
fifth cycle.  Lukasiewicz equality has the greatest results
and Gödel equality has the smallest results because the
corresponding fuzzy implications also have this feature.

8. Conclusions
Our model of user preference is designed to support pref-
erential top-k queries. It is divided into attribute prefer-
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Figure 11: Comparison of different fuzzy mea-
sures.

ences and an aggregation function to obtain overall pref-
erence values. The model has been implemented in a
web-based system Kore4 and integrated with a tool for
preferential search (top-k) and inductive learning of user
preference (IGAP). The system was tested by real users
and the data logged from the experiment indicates that
there is a positive correlation between the order of results
returned by our system and the order generated by user
ratings. It also shows that inductive learning from ratings
improves the preference model.

We created a new scoring description logic s-EL(D) as a
language to describe the preference model. We extended
the structural algorithms from [9] to handle a fuzzy con-
crete domain D. If we use a simplified version of s-EL(D)
without aggregation and top-k constructor, the extended
reasoning algorithm retains polynomial complexity. We
used the same approach in case of instance problem and
we present a structural algorithm with polynomial com-
plexity.

DL s-EL(D) differs from other fuzzified description logics
because it has crisp roles. Fuzzy concepts do not represent
uncertain information, but rather vague user preference.
Every such preferential concept generates an order of in-
dividuals from the most preferred to the least preferred.
We propose another DL o-EL(D) which discards the fuzzy
membership degrees and keeps only the information about
order of individuals. Therefore concepts in o-EL(D) are
interpreted as preorders of the domain. This approach is
new and it significantly changes the perspective for con-
cept constructors and reasoning problems. We introduced
an order-oriented modification of instance problem, called
instance order problem – to find out if individual a is pre-
ferred more than b according to a concept ≤C in every
possible interpretation. We also present a tableaux-like
algorithm to solve instance order problem.

We further study the relationship between s-EL(D) con-
cepts and o-EL(D) concepts. If two such concepts ≤C , C
define the same order of individuals, we say that an order
concept ≤C is generated by a scoring concept C. Then
we prove that constructors ∃ and top-k preserve this prop-
erty. The situation is more complicated for concept con-

4http://x64.ics.upjs.sk:8080/kore/

junctions (because order-oriented conjunction produces
partial preorders) and aggregations (because they depend
on how we set weights and point tables).
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