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Abstract
We develop a verification method based on a novel use
of tree automata to represent heap configurations to al-
low verification of important properties—such as no null-
pointer dereferences, absence of memory leaks, etc.—for
programs manipulating complex dynamically linked data
structures. In our approach, a heap is split into sev-
eral “separated” parts such that each of them can be
represented by a tree automaton. The automata can
refer to each other allowing the different parts of the
heaps to mutually refer to their boundaries. Moreover,
we allow for a hierarchical representation of heaps by al-
lowing alphabets of the tree automata to contain other,
nested tree automata. Program instructions can be eas-
ily encoded as operations on our representation struc-
ture. This allows verification of programs based on sym-
bolic state-space exploration together with refinable ab-
straction within the so-called abstract regular tree model
checking. A motivation for the approach is to combine ad-
vantages of automata-based approaches (higher generality
and flexibility of the abstraction) with some advantages
of separation-logic-based approaches (efficiency).
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1. Introduction
Traditional approaches for ensuring quality of computer
systems such as code review or testing are nowadays reach-
ing their inherent limitations due to the growing complex-
ity of the current computer systems. That is why, there is
an increasing demand for more capable techniques. One
of the ways how to deal with this situation is to use suit-
able formal verification approaches.

In case of software, one especially critical area is that of
ensuring safe memory usage in programs using dynamic
memory allocation. The development of such programs
is quite complicated, and many programming errors can
easily arise here. Worse yet, the bugs within memory ma-
nipulation often cause an unpredictable behaviour, and
they are often very hard to find. Indeed, despite the use
of testing and other traditional means of quality assur-
ance, many of the memory errors make it into the pro-
duction versions of programs causing them to crash unex-
pectedly by breaking memory protection or to gradually
waste more and more memory (if the error causes memory
leaks). Consequently, using formal verification is highly
desirable in this area.

Formal verification of programs with dynamically linked
data structures is, however, very demanding since these
programs are infinite-state. One of the most promising
ways of dealing with infinite state verification is to use
symbolic verification in which infinite sets of reachable
configurations are represented finitely using a suitable for-
malism. In case of programs with dynamically linked data
structures, the use of symbolic verification is complicated
by the fact that their configurations are graphs, and repre-
senting infinite sets of graphs is particularly complicated
(compared to objects like words or trees).

Many different verification approaches for programs ma-
nipulating dynamically linked data structures have been
proposed so far. Some of them are based on logics [18, 21,
20, 5, 12, 19, 9, 23, 22, 8, 16, 11], others are based on using
automata [7, 6, 10], upward closed sets [1, 3], as well as
other formalisms. The approaches differ in their general-
ity, efficiency, and degree of automation. Among the fully
automatic ones, the works [5, 22] present an approach
based on separation logic (see [20]) that is quite scalable
due to using local reasoning. However, their method is
limited to programs manipulating various kinds of lists.
There are other works based on separation logic which
also consider trees or even more complex data structures,
but they either expect the input program to be in some
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special form (e.g., [12]) or they require some additional
information about the data structures which are involved
(as in [19, 17]). Similarly, even the other existing ap-
proaches that are not based on separation logic often suf-
fer from the need of non-trivial user aid in order to suc-
cessfully finish the verification task (see, e.g., [18, 21]).
On the other hand, the work [7] proposed an automata-
based method which is able to handle fully automatically
quite complex data structures, but it suffers from several
drawbacks such as a monolithic representation of memory
configurations which does not allow this approach to scale
well.

We address verification of sequential programs with com-
plex dynamic linked data structures such as various forms
of singly- and doubly-linked lists (SLL/DLL), possibly
cyclic, shared, hierarchical, and/or having different ad-
ditional (head, tail, data, and the like) pointers, as well
as various forms of trees. We in particular consider C
pointer manipulation, but our approach can easily be ap-
plied to any other similar language. We concentrate on
safety properties of the considered programs which in-
cludes generic properties like absence of null dereferences,
double free operations, dealing with dangling pointers, or
memory leakage. Furthermore, to check various shape
properties of the involved data structures one can use
testers, i.e., parts of code which, in case some desired
property is broken, lead the control flow to a designated
error location.

For the above purpose, we propose a novel approach of
representing sets of heaps via tree automata (TA). In our
representation, a heap is split in a canonical way into
several tree components whose roots are the so-called cut-
points. Cut-points are nodes pointed to by program vari-
ables or having several incoming edges. The tree com-
ponents can refer to the roots of each other, and hence
they are “separated” much like heaps described by for-
mulae joined by the separating conjunction in separation
logic [20]. Using this decomposition, sets of heaps with
a bounded number of cut-points are then represented by
a new class of automata called forest automata (FA) that
are basically tuples of TA accepting tuples of trees whose
leaves can refer back to the roots of the trees. Moreover,
we allow alphabets of FA to contain nested FA, leading
to a hierarchical encoding of heaps, allowing us to rep-
resent even sets of heaps with an unbounded number of
cut-points (e.g., sets of DLL). Intuitively, a nested FA can
describe a part of a heap with a bounded number of cut-
points (e.g., a DLL segment), and by using such an au-
tomaton as an alphabet symbol an unbounded number of
times, heaps with an unbounded number of cut-points are
described. Finally, since FA are not closed under union,
we work with sets of forest automata, which are an anal-
ogy of disjunctive separation logic formulae.

The proposed approach brings the principle of local heap
manipulation (i.e., dealing with separated parts of heaps)
from separation logic into the world of automata. The mo-
tivation is to combine some advantages of using automata
and separation logic. Automata provide higher general-
ity and flexibility of the abstraction (see also below) and
allow us to leverage the recent advances of efficient use of
non-deterministic automata [2, 4]. The use of separation
allows for a further increase in efficiency compared to a
monolithic automata-based encoding proposed in [7].

Outline. The rest of this text is organised as follows. Sec-
tion 2 contains preliminary notions that we build on. In
Section 3, we give an informal presentation of forest au-
tomata which are formally described in Section 4 and Sec-
tion 5. In Section 6 we briefly describe our verification
procedure for programs manipulating dynamically linked
data structures. Our experimental results are presented
in Section 7. The conclusion and possible future direc-
tions are discussed in Section 8.

More details regarding this topic may also be found in
[13, 14, 15].

2. Preliminaries
In this section, we provide basic notions which are used
throughout the rest of this text.

2.1 Alphabets and Trees
A ranked alphabet Σ is a set of symbols together with a
ranking function # : Σ → N. For a ∈ Σ, the value #a
is called the rank of a. For any n ≥ 0, we denote by Σn
the set of all symbols of rank n from Σ. Let ε denote
the empty sequence. A tree t over a ranked alphabet
Σ is a partial mapping t : N∗ → Σ that satisfies the
following conditions: (1) dom(t) is a finite prefix-closed
subset of N∗ and (2) for each v ∈ dom(t), if #t(v) = n ≥
0, then {i | vi ∈ dom(t)} = {1, . . . , n}. Each sequence
v ∈ dom(t) is called a node of t. For a node v, we define
the ith child of v to be the node vi, and the ith subtree of v
to be the tree t′ such that t′(v′) = t(viv′) for all v′ ∈ N∗.
A leaf of t is a node v which does not have any children,
i.e., there is no i ∈ N with vi ∈ dom(t). We denote by TΣ

the set of all trees over the alphabet Σ.

2.2 Tree Automata
A (finite, non-deterministic) tree automaton (abbreviated
sometimes as TA in the following) is a quadruple A =
(Q,Σ,∆, F) where Q is a finite set of states, F ⊆ Q is
a set of final states, Σ is a ranked alphabet, and ∆ is a
set of transition rules. Each transition rule is a triple of
the form ((q1, . . . , qn), a, q) where q1, . . . , qn, q ∈ Q, a ∈ Σ,

and #a = n. We use equivalently (q1, . . . , qn)
a−→ q and

q
a−→ (q1, . . . , qn) to denote that ((q1, . . . , qn), a, q) ∈ ∆.

The two notations correspond to the bottom-up and top-
down representation of tree automata, respectively. (Note
that we can afford to work interchangeably with both of
them since we work with non-deterministic tree automata,
which are known to have an equal expressive power in
their bottom-up and top-down representations.) In the
special case when n = 0, we speak about the so-called leaf
rules, which we sometimes abbreviate as

a−→ q or q
a−→.

Let A = (Q,Σ,∆, F) be a TA. A run of A over a tree
t ∈ TΣ is a mapping π : dom(t) → Q such that, for
each node v ∈ dom(t) of rank #t(v) = n where q =
π(v), if qi = π(vi) for 1 ≤ i ≤ n, then ∆ has a rule

(q1, . . . , qn)
t(v)−−→ q. We write t

π
=⇒ q to denote that π

is a run of A over t such that π(ε) = q. We use t =⇒ q

to denote that t
π

=⇒ q for some run π. The language
accepted by a state q is defined by LA(q) = {t | t =⇒ q},
while the language of a set of states S ⊆ Q is defined as
LA(S) =

⋃
q∈S LA(q). When it is clear which TA A we

refer to, we only write L(q) or L(S). The language of A is
defined as L(A) = LA(F ). We also extend the notion of a
language to a tuple of states (q1, . . . , qn) ∈ Qn by letting
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Figure 1: (a) A heap graph with cut-points highlighted in red, (b) the canonical tree decomposition of
the heap with x ordered before y

L((q1, . . . , qn)) = L(q1) × · · · × L(qn). The language of
a set of n-tuples of sets of states S ⊆ (2Q)

n
is the union

of languages of elements of S, the set L(S) =
⋃
E∈S L(E).

We say that X accepts y to express that y ∈ L(X).

3. From Heaps to Forests
In this section, we outline in an informal way our pro-
posal of hierarchical forest automata and the way how
sets of heaps can be represented by them. For the pur-
pose of the explanation, heaps may be viewed as oriented
graphs whose nodes correspond to allocated memory cells
and edges to pointer links between these cells. The nodes
may be labelled by non-pointer data stored in them (as-
sumed to be from a finite data domain) and by program
variables pointing to the nodes. Edges may be labelled
by the corresponding selectors.

In what follows, we restrict ourselves to garbage free heaps
in which all memory cells are reachable from pointer vari-
ables by following pointer links. However, this is not
a restriction in practice since the emergence of garbage
can be checked for each executed program statement. If
some garbage arises, an error message can be issued and
the symbolic computation stopped. Alternatively, the
garbage can be removed and the computation continued.

It is easy to see that each heap graph can be decomposed
into a set of tree components when the leaves of the tree
components are allowed to reference back to the roots of
these components. Moreover, given a total ordering on
program variables and selectors, each heap graph may be
decomposed into a tuple of tree components in a canon-
ical way as illustrated in Figure 1 (a) and (b). In par-
ticular, one can first identify the so-called cut-points, i.e.,
nodes that are either pointed to by a program variable or
that have several incoming edges. Next, the cut-points
can be canonically numbered using a depth-first traver-
sal of the heap graph starting from nodes pointed to by
program variables in the order derived from the order of
the program variables and respecting the order of selec-
tors. Subsequently, one can split the heap graph into
tree components rooted at particular cut-points. These
components should contain all the nodes reachable from

their root while not passing through any cut-point, plus
a copy of each reachable cut-point, labelled by its num-
ber. Finally, the tree components can then be canonically
ordered according to the numbers of the cut-points rep-
resenting their roots.

Our proposal of forest automata builds upon the described
decomposition of heaps into tree components. In partic-
ular, a forest automaton (FA) is basically a tuple of tree
automata (TA). Each of the tree automata accepts trees
whose leaves may refer back to the roots of any of these
trees. An FA then represents exactly the set of heaps that
may be obtained by taking a single tree from the language
of each of the component TA and by gluing the roots of
the trees with the leaves referring to them.

Below, we will mostly concentrate on a subclass of FA
that we call canonicity respecting forest automata (CFA).
CFA encode sets of heaps decomposed in a canonical way,
i.e., such that if we take any tuple of trees accepted by the
given CFA, construct a heap from them, and then canon-
ically decompose it, we get the tuple of trees we started
with. This means that in the chosen tuple there is no
tree with a root that does not correspond to a cut-point
and that the trees are ordered according to the depth-first
traversal as described above. The canonicity respecting
form allows us to test inclusion on the sets of heaps rep-
resented by CFA by testing inclusion component-wise on
the languages of the TA constituting the given CFA.

Note, however, that FA are not closed under union. Even
for FA having the same number of components, uniting
the TA component-wise may yield an FA overapproxi-
mating the union of the sets of heaps represented by the
original FA (cf. Section 4). Thus, we represent unions
of FA explicitly as sets of FA (SFA), which is similar to
dealing with disjunctions of conjunctive separation logic
formulae. However, as we will see, inclusion on the sets
of heaps represented by SFA is still easily decidable.

The described encoding allows one to represent sets of
heaps with a bounded number of cut-points. However, to
handle many common dynamic data structures, one needs
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Figure 2: (a) A part of a DLL, (b) a hierarchical
encoding of the DLL

to represent sets of heaps with an unbounded number of
cut-points. Indeed, for instance, in doubly-linked lists
(DLLs), every node is a cut-point. We solve this problem
by representing heaps in a hierarchical way. In particular,
we collect sets of repeated subgraphs (called components)
containing cut-points in the so-called boxes. Every oc-
currence of such components can then be replaced by a
single edge labelled by the appropriate box. To specify
how a subgraph enclosed within a box is connected to
the rest of the graph, the subgraph is equipped with the
so-called input and output ports. The source vertex of
a box then matches the input port of the subgraph, and
the target vertex of the edge matches the output port. In
this way, a set of heap graphs with an unbounded number
of cut-points can be transformed into a set of hierarchi-
cal heap graphs with a bounded number of cut-points at
each level of the hierarchy. Figures 2 (a) and (b) illus-
trate how this approach can basically reduce DLLs into
singly-linked lists (with a DLL segment used as a kind of
meta-selector).

Sets of heap hypergraphs corresponding either to the top
level of the representation or to boxes of different lev-
els can then be decomposed into (hyper)tree components
and represented using hierarchical FA whose alphabet can
contain nested FA.1 Intuitively, FA appearing in the al-
phabet of some superior FA play a role similar to that
of inductive predicates in separation logic.2 We restrict
ourselves to automata that form a finite and strict hierar-
chy (i.e., there is no circular use of the automata in their
alphabets).

The question of deciding inclusion on sets of heaps rep-
resented by hierarchical FA remains open. However, we
propose a canonical decomposition of hierarchical hyper-
graphs allowing inclusion to be decided for sets of heap hy-
pergraphs represented by FA provided that the nested FA
labelling hyperedges are taken as atomic alphabet sym-
bols. Note that this decomposition is by far not the same
as for non-hierarchical heap graphs due to a need to deal

1Since graphs are a special case of hypergraphs, in the
following, we will work with hypergraphs only.
2For instance, we use a nested FA to encode a DLL seg-
ment of length 1. In separation logic, the corresponding
induction predicate would represent segments of length 1
or more. In our approach, the repetition of the segment
is encoded in the structure of the top-level FA.

with nodes that are not reachable on the top level, but are
reachable through edges hidden in some boxes. This re-
sult allows us to safely approximate inclusion checking on
hierarchically represented heaps, which appears to work
quite well in practice.

4. Forest Automata
We now formalise the notion of hypergraphs, their forest
representation, and the notion of forest automata.

4.1 Hypergraphs
A ranked alphabet is a finite set Γ of symbols associated
with a map # : Γ→ N. The value #(a) is called the rank
of a ∈ Γ. We use #(Γ) to denote the maximum rank
of a symbol in Γ. A ranked alphabet Γ is a hypergraph
alphabet if it is associated with a total ordering �Γ on its
symbols. For the rest of the section, we fix a hypergraph
alphabet Γ.

An (oriented, Γ-labelled) hypergraph (with designated in-
put/output ports) is a tuple G = (V,E, P ) where:

• V is a finite set of vertices.

• E is a finite set of hyperedges such that every hyper-
edge e ∈ E is of the form (v, a, (v1, . . . , vn)) where
v ∈ V is the source of e, a ∈ Γ, n = #(a), and
v1, . . . , vn ∈ V are targets of e and a-successors of
v.

• P is the so-called port specification that consists of
a set of input ports IP ⊆ V , a set of output ports
OP ⊆ V , and a total ordering �P on IP ∪OP .

We use v to denote a sequence v1, . . . , vn and v.i to denote
its ith vertex vi. For symbols a ∈ Γ with #(a) = 0,
we write (v, a) ∈ E to denote that (v, a, ()) ∈ E. Such
hyperedges may simulate labels assigned to vertices.

A path in a hypergraph G = (V,E, P ) is a sequence
〈v0, a1, v1, . . . , an, vn〉, n ≥ 0, where for all 1 ≤ i ≤ n,
vi is an ai-successor of vi−1. G is called deterministic iff
∀(v, a, v), (v, a′, v′) ∈ E: a = a′ =⇒ v = v′. G is called
well-connected iff each node v ∈ V is reachable through
some path from some input port of G.

As we have already briefly mentioned in Section 3, in hy-
pergraphs representing heaps, input ports correspond to
nodes pointed to by program variables or to input nodes
of components, and output ports correspond to output
nodes of components. Figure 1 (a) shows a hypergraph
with two input ports corresponding to the variables x and
y. The hyperedges are labelled by selectors data and
next. All the hyperedges are of arity 1.

4.2 Forest Representation of Hypergraphs
We will now define the forest representation of hyper-
graphs. For that, we will first define a notion of a tree
as a basic building block of forests. We will define trees
much like hypergraphs but with a restricted shape and
without input/output ports. The reason for the latter is
that the ports of forests will be defined on the level of the
forests themselves, not on the level of the trees that they
are composed of.

Formally, an (unordered, oriented, Γ-labelled) tree T =
(V,E) consists of a set of vertices and hyperedges defined
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as in the case of hypergraphs with the following additional
requirements: (1) V contains a single node with no incom-
ing hyperedge (called the root of T and denoted root(T )).
(2) All other nodes of T are reachable from root(T ) via
some path. (3) Each node has at most one incoming hy-
peredge. (4) Each node appears at most once among the
target nodes of its incoming hyperedge (if it has one).
Given a tree, we call its nodes with no successors leaves.

Let us assume that Γ ∩ N = ∅. An (ordered, Γ-labelled)
forest (with designated input/output ports) is a tuple F =
(T1, . . . , Tn, R) such that:

• For every i ∈ {1, . . . , n}, Ti = (Vi, Ei) is a tree that
is labelled by the alphabet (Γ ∪ {1, . . . , n}).

• R is a (forest) port specification consisting of a set
of input ports IR ⊆ {1, . . . , n}, a set of output ports
OR ⊆ {1, . . . , n}, and a total ordering�R of IR∪OR.

• For all i, j ∈ {1, . . . , n}, (1) if i 6= j, then Vi ∩ Vj =
∅, (2) #(i) = 0, and (3) a vertex v with (v, i) ∈
Ej is not a source of any other edge (it is a leaf).
We call such vertices root references and denote by
rr(Ti, j) the set of all root references to Tj in Ti, i.e.,
rr(Ti, j) = {v ∈ Vi | (v, j) ∈ Ei}. We also define
rr(Ti) =

⋃n
j=1 rr(Ti, j).

A forest F = (T1, . . . , Tn, R) represents the hypergraph
⊗F obtained by uniting the trees T1, . . . , Tn and inter-
connecting their roots with the corresponding root ref-
erences. In particular, for every root reference v ∈ Vi,
i ∈ {1, . . . , n}, hyperedges leading to v are redirected to
the root of Tj where (v, j) ∈ Ei, and v is removed. The
sets IR and OR then contain indices of the trees whose
roots are to be input/output ports of ⊗F , respectively.
Finally, their ordering �P is defined by the �R-ordering
of the indices of the trees whose roots they are. Formally,
⊗F = (V,E, P ) where:

• V =
⋃n
i=1 Vi \ rr(Ti),

• E =
⋃n
i=1{(v, a, v

′) | a ∈ Γ ∧ ∃(v, a, v) ∈ Ei ∀1 ≤
j ≤ #(a): if ∃(v.j, k) ∈ Ei with k ∈ {1, . . . , n}, then
v′.j = root(Tk), else v′.j = v.j},

• IP = {root(Ti) | i ∈ IR},

• OP = {root(Ti) | i ∈ OR},

• ∀u, v ∈ IP ∪ OP such that u = root(Ti) and v =
root(Tj):

u �P v ⇐⇒ i �R j.

4.3 Forest Automata
We will now define forest automata as tuples of tree au-
tomata extended by a port specification. Tree automata
accept trees that are ordered and node-labelled. There-
fore, in order to be able to use forest automata to en-
code sets of forests, we must define a conversion between
ordered, node-labelled trees and our unordered, edge-la-
belled trees.

We convert a deterministic Γ-labelled unordered tree T
into a node-labelled ordered tree ot(T ) by (1) transferring
the information about labels of edges of a node into the

symbol associated with the node and by (2) ordering the
successors of the node. More concretely, we label each
node of the ordered tree ot(T ) by the set of labels of the
hyperedges leading from the corresponding node in the
original tree T . Successors of the node in ot(T ) correspond
to the successors of the original node in T , and are ordered
w.r.t. the order �Γ of hyperedge labels through which the
corresponding successors are reachable in T (while always
keeping tuples of nodes reachable via the same hyperedge
together, ordered in the same way as they were ordered
within the hyperedge). The rank of the new node label is
given by the sum of ranks of the original hyperedge labels
embedded into it. Below, we use ΣΓ to denote the ranked
node alphabet obtained from Γ as described above.

A forest automaton over Γ (with designated input/output
ports) is a tuple F = (A1, . . . ,An, R) where:

• For all 1 ≤ i ≤ n, Ai = (Qi,Σ,∆i, Fi) is a TA with
Σ = ΣΓ ∪ {1, . . . , n} and #(i) = 0.

• R is defined as for forests, i.e., it consists of input
and output ports IR, OR ⊆ {1, . . . , n} and a total
ordering �R on IR ∪OR.

The forest language of F is the set of forests LF (F) =
{(T1, . . . , Tn, R) | ∀1 ≤ i ≤ n : ot(Ti) ∈ L(Ai)}, i.e.,
the forest language is obtained by taking the Cartesian
product of the tree languages, unordering the trees that
appear in its elements, and extending them by the port
specification. The forest language of F in turn defines the
hypergraph language of F which is the set of hypergraphs
L(F) = {⊗F | F ∈ LF (F)}.

5. Hierarchical Forest Automata
As discussed informally in Section 3, simple forest au-
tomata cannot express sets of data structures with un-
bounded numbers of cut-points like, e.g., the set of all
doubly-linked lists (Figure 2). To capture such data struc-
tures, we will enrich the expressive power of forest au-
tomata by allowing them to be hierarchically nested. For
the rest of the section, we fix a hypergraph alphabet Γ.

5.1 Hierarchical Hypergraphs
We first introduce hypergraphs with hyperedges labelled
by the so-called boxes which are sets of hypergraphs (de-
fined up to isomorphism3). A hypergraph G with hyper-
edges labelled by boxes encodes a set of hypergraphs. The
hypergraphs encoded by G can be obtained by replacing
every hyperedge of G labelled by a box by some hyper-
graph from the box. The hypergraphs within the boxes
may themselves have hyperedges labelled by boxes, which
gives rise to a hierarchical structure (which we require to
be of a finite depth).

Let Υ be a hypergraph alphabet. First, we define an
Υ-labelled component as an Υ-labelled hypergraph C =
(V,E, P ) which satisfies the requirement that |IP | = 1 and
IP ∩OP = ∅. Then, an Υ-labelled box is a non-empty set
B of Υ-labelled components such that all of them have the
same number of output ports. This number is called the
rank of the box B and denoted by #(B). Let B[Υ] be the

3Dealing with hypergraphs (and later also automata) de-
fined up to isomorphism avoids a need to deal with classes
instead of sets.
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ranked alphabet containing all Υ-labelled boxes such that
B[Υ]∩Υ = ∅. The operator B gives rise to a hierarchy of
alphabets Γ0,Γ1, . . . where:

• Γ0 = Γ is the set of plain symbols,

• for i ≥ 0, Γi+1 = Γi ∪ B[Γi] is the set of symbols of
level i+ 1.

A Γi-labelled hypergraph H is then called a Γ-labelled
(hierarchical) hypergraph of level i, and we refer to the
Γi−1-labelled boxes appearing on edges of H as to nested
boxes of H. A Γ-labelled hypergraph is sometimes called
a plain Γ-labelled hypergraph.

5.2 Semantics of Hierarchical Hypergraphs
A Γ-labelled hierarchical hypergraph H encodes a set JHK
of plain hypergraphs, called the semantics of H. For a set
S of hierarchical hypergraphs, we use JSK to denote the
union of semantics of its elements.

If H is plain, then JHK contains just H itself. If H is of
level j > 0, then hypergraphs from JHK are obtained in
such a way that hyperedges labelled by boxes B ∈ Γj are
substituted in all possible ways by plain components from
JBK. The substitution is similar to an ordinary hyperedge
replacement used in graph grammars. When an edge e
is substituted by a component C, the input port of C
is identified with the source node of e, and the output
ports of C are identified with the target nodes of e. The
correspondence of the output ports of C and the target
nodes of e is defined using the order of the target nodes
in e and the ordering of ports of C. The edge e is finally
removed from H.

Formally, given a Γ-labelled hierarchical hypergraph H =
(V,E, P ), a hyperedge e = (v, a, v) ∈ E, and a component
C = (V ′, E′, P ′) where #(a) = |OP ′ | = k, the substitu-
tion of e by C in H results in the hypergraph H[C/e]
defined as follows. Let o1 �P . . . �P ok be the ports
of OP ordered by �P . W.l.o.g., assume V ∩ V ′ = ∅. C
will be connected to H by identifying its ports with their
matching vertices of e. We define for every vertex w ∈ V ′
its matching vertex match(w) such that (1) if w ∈ IP ′ ,
match(w) = v (the input port of C matches the source
of e), (2) if w = oi, 1 ≤ i ≤ k, match(w) = v.i (the
output ports of C match the corresponding targets of e),
and (3) match(w) = w otherwise (an inner node of C
is not matched with any node of H). Then H[C/e] =
(V ′′, E′′, P ) where V ′′ = V ∪ (V ′ \ (IP ′ ∪OP ′)) and E′′ =
(E \ {e}) ∪ {(v′′, a′, v′′) | ∃(v′, a′, v′) ∈ E′ : match(v′) =
v′′ ∧ ∀1 ≤ i ≤ k : match(v′.i) = v′′.i}.

We can now give an inductive definition of JHK. Let
e1 = (v1, B1, v1), . . . , en = (vn, Bn, vn) be all edges of
H labelled by Γ-labelled boxes. Then, G ∈ JHK iff it is
obtained from H by successively substituting every ei by
a component Ci ∈ JBiK, i.e., JHK is the set

{H[C1/e1] . . . [Cn/en] | C1 ∈ JB1K, . . . , Cn ∈ JBnK}.

Figure 2 (b) shows a hierarchical hypergraph of level 1
whose semantics is the (hyper)graph of Figure 2 (a).

5.3 Hierarchical Forest Automata
We now define hierarchical forest automata that repre-
sent sets of hierarchical hypergraphs. The hierarchical
FA are FA whose alphabet can contain symbols which
encode boxes appearing on edges of hierarchical hyper-
graphs. The boxes are themselves represented using hier-
archical FA.

To define an alphabet of hierarchical FA, we will take
an approach similar to the one used for the definition of
hierarchical hypergraphs. First, we define an operator A
which for a hypergraph alphabet Υ returns the ranked
alphabet containing the set of all SFA S over (a finite
subset of) Υ such that L(S) is an Υ-labelled box and
such that A[Υ] ∩ Υ = ∅. The rank of S in the alphabet
A[Υ] is the rank of the box L(S). The operator A gives
rise to a hierarchy of alphabets Γ0,Γ1, . . . where:

• Γ0 = Γ is the set of plain symbols,

• for i ≥ 0, Γi+1 = Γi ∪ A[Γi] is the set of symbols of
level i+ 1.

A hierarchical FA F over Γi is then called a Γ-labelled
(hierarchical) FA of level i, and we refer to the hierarchical
SFA over Γi−1 appearing within alphabet symbols of F
as to nested SFA of F .

Let F be a hierarchical FA. We now define an opera-
tor ] that translates any Γi-labelled hypergraph G =
(V,E, P ) ∈ L(F) to a Γ-labelled hierarchical hypergraph
H of level i (i.e., it translates G by transforming the SFA
that appear on its edges to the boxes they represent).
Formally, G] is defined inductively as the Γ-labelled hi-
erarchical hypergraph H = (V,E′, P ) of level i that is
obtained from the hypergraph G by replacing every edge
(v,S, v) ∈ E, labelled by a Γ-labelled hierarchical SFA S,

by the edge (v,L(S)], v), labelled by the box L(S)] where
L(S)] denotes the set (box) {X] | X ∈ L(S)}. Then, we
define the semantics of a hierarchical FA F over Γ as the
set of Γ-labelled (plain) hypergraphs JFK = JL(F)]K.

Notice that a hierarchical SFA of any level has finitely
many nested SFA of a lower level only. Therefore, a hier-
archical SFA is a finitely representable object. Notice also
that even though the maximum number of cut-points of
hypergraphs from L(S)] is fixed (SFA always accept hy-
pergraphs with a fixed maximum number of cut-points),
the number of cut-points of hypergraphs in JSK may be
unbounded. The reason is that hypergraphs from L(S)]

may contain an unbounded number of hyperedges labelled
by boxes B such that hypergraphs from JBK contain cut-
points too. These cut-points then appear in hypergraphs
from JSK, but they are not visible at the level of hyper-
graphs from L(S)].

Hierarchical SFA are therefore finite representations of
sets of hypergraphs with possibly unbounded numbers of
cut-points.

6. Verification Based on Forest Automata
A fundamental property of our newly proposed formalism
of forest automata is that (1) the language inclusion can
be checked efficiently (see [15]), and (2) C program state-
ments manipulating pointers can be easily encoded as op-
erations modifying FA (see again [15]). Due to this and
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due to the fact that FA are based on tree automata, we
can build on the concept of abstract regular tree model
checking (see [7]) to obtain a new symbolic verification
procedure for the considered class of programs. The pro-
cedure then works as follows: The algorithm maintains a
set of visited program configurations and a set of program
configurations which need to be processed. At the begin-
ning, the set of visited program configurations is empty,
and the set of program configurations waiting to be pro-
cessed contains the initial configuration of the program
to be analysed which consists of the initial assignment
of program variables, the empty heap, and the program
counter pointing to the first instruction of the program.
Then, the algorithm iteratively picks one waiting program
configuration and performs a symbolic execution of the
appropriate program statement. This essentially means
that one takes a forest automaton representing a set of
heaps and transforms it into a new forest automaton. The
set of heaps represented by the newly obtained forest au-
tomaton reflects the change within the heap caused by the
execution of the given program statement. In addition to
that, one can also apply abstraction in order to be able
to obtain sets of all reachable configurations, which are
typically infinite, in a finite number of steps. In the next
step, the algorithm checks whether the newly created pro-
gram configuration is covered by the set of already visited
program configurations by means of testing inclusion of
languages represented by forest automata. If the newly
obtained symbolic configuration is not covered by the set
of visited program configurations, it is inserted into the
set of waiting program configurations. The process then
continues by picking another waiting configuration. Dur-
ing the symbolic execution, the algorithm checks whether
the verified code behaves properly, i.e., it does not deref-
erence invalid pointers, it does not produce memory leaks,
etc. If the program does not operate properly, the proce-
dure is immediately terminated, and an error is reported.
If the set of waiting configurations becomes empty, the
procedure terminates and outputs that the program is
safe.

When an error is encountered, it remains to find out
whether it is reachable within the original program, or it
was encountered due to an excessive abstraction. In order
to check, whether the error is indeed reachable, one can
execute the corresponding trace without the abstraction.
If such trace cannot be executed, then the set of reachable
program configurations is over-approximated too much,
and the abstraction needs to be refined. The refinement
can be done globally which is, however, not very efficient.
A better solution is to use the counterexample-guided ab-
straction refinement as introduced in the framework of
abstract regular tree model checking (see again [7]). For
that to work, one needs to be able to execute the error
trace backwards (see [14] for more details).

Our approach has been implemented in a prototype tool
called Forester as a gcc plug-in. This allows us to demon-
strate that the proposed approach is very promising as the
tool can successfully handle multiple highly non-trivial
case studies (for some of which we are not aware of any
other tool that could handle them fully automatically).

7. Experimental Results
We have experimentally compared the performance of our
tool with that of Space Invader [5], the first fully auto-
mated tool based on separation logic, Predator [11], a new

fully automated tool based in principle on separation logic
(although it represents sets of heaps using graphs), and
also with the ARTMC tool [7] based on abstract regu-
lar tree model checking4. We tested the tool on sam-
ple programs with various types of lists (singly-linked,
doubly-linked, cyclic, nested), trees, and their combina-
tions. Basic memory safety properties—in particular, ab-
sence of null and undefined pointer dereferences, double
free operations, and absence of garbage—were checked.
We have run our tests on a machine with an Intel T9600
(2.8GHz) CPU and 4GiB of RAM. The comparison with
Space Invader and Predator was done on examples with
lists only since Invader and Predator do not handle trees.
The higher flexibility of our automata abstraction shows
up, for example, in the test case with a list of sublists of
lengths 0 or 1 for which Space Invader does not terminate.
Our technique handles this example smoothly (without
any need to add any special inductive predicates that
could decrease the performance or generate false alarms).
Predator can also handle this test case, but to achieve
that, the algorithms implemented in it must have been
manually extended to use a new kind of list segment of
length 0 or 1, together with an appropriate modification
of the implementation of Predator’s join and abstraction
operations5. On the other hand, the ARTMC tool can, in
principle, handle more general structures than we can cur-
rently handle such as trees with linked leaves. However,
the representation of heap configurations used in ARTMC
is much heavier which causes ARTMC not to scale that
well.

Table 1 summarises running times (in seconds) of the four
tools on our case studies. The value T means that the
running time exceeded 30 minutes, o.o.m. means that
the tool ran out of memory, and the value Err stands
for a failure of symbolic execution. The names of experi-
ments in the table contain the name of the data structure
handled by the program. In particular, “SLL” stands for
singly-linked lists, “DLL”for doubly linked lists (the prefix
“C” means cyclic), “tree” for binary trees, “tree+parents”
for trees with parent pointers. Nested variants of SLL are
named as “SLL of” and the type of the nested list. In par-
ticular, “SLL of 0/1 SLLs” stands for SLL of nested SLL
of length 0 or 1. “SLL+head” stands for a list where each
element points to the head of the list, “SLL of 2CDLLs”
stands for SLL whose implementation of lists used in the
Linux kernel with restricted pointer arithmetic [11] which
we can also handle. All experiments start with a random
creation and end with a disposal of the specified struc-
ture. If some further operation is performed in between
the creation phase and the disposal phase, it is indicated
in brackets. In the experiment “tree+stack”, a randomly
created tree is disposed using a stack in a top-down man-
ner such that we always dispose a root of a subtree and
save its subtrees into the stack. “DSW” stands for the
Deutsch-Schorr-Waite tree traversal (the Lindstrom vari-
ant). Forester has been provided a set of suitable boxes
for each of the test cases for the comparison in Table 1.

8. Conclusions and Future Directions

4Since it is quite difficult to encode the input for ARTMC,
we have tried it on some interesting cases only.
5The operations were carefully tuned not to easily gen-
erate false alarms, but the risk of generating them has
anyway been increased.
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Table 1: A comparison of Forester with other existing tools
example Forester Invader Predator ARTMC

SLL (delete) 0.01 < 0.10 0.01 < 0.50
SLL (reverse) < 0.01 0.03 < 0.01
SLL (bubblesort) 0.02 Err 0.02
SLL (insertsort) 0.02 0.10 0.01
SLL (mergesort) 0.07 Err 0.13
SLL of CSLLs 0.07 T 0.12
SLL+head 0.01 0.06 0.01
SLL of 0/1 SLLs 0.02 T 0.03
SLLLinux < 0.01 T < 0.01
DLL (insert) 0.02 0.08 0.03 0.40
DLL (reverse) 0.01 0.09 0.01 1.40
DLL (insertsort1) 0.20 0.18 0.15 1.40
DLL (insertsort2) 0.06 Err 0.03
CDLL < 0.01 0.09 < 0.01
DLL of CDLLs 0.18 T 0.13
SLL of 2CDDLsLinux 0.03 T 0.19
tree 0.06 3.00
tree+stack 0.02
tree+parents 0.10
tree (DSW) 0.16 o.o.m

We have presented a new method for verification of heap
manipulating programs. In particular, we use forest au-
tomata to encode sets of heaps and exploit the fact that
the set of C statements that we need to support can be
easily symbolically executed over FA. Moreover, the fact
that FA are built over tree automata allows us to build a
verification procedure based on the framework of abstract
regular tree model checking. Further, we have described
how more complex data structures—such as doubly-linked
lists—can be verified using hierarchically nested forest au-
tomata. Finally, we have implemented the above men-
tioned approach in a prototype tool called Forester. We
have performed an experimental evaluation on a set of
benchmarks consisting of C programs manipulating vari-
ous dynamically allocated data structures in order to com-
pare Forester to other similar tools. The obtained results
confirmed that our approach is quite competitive in prac-
tice.

As of what concerns the future work, it would be inter-
esting to extend our approach such that it could track
some information about the data stored within dynami-
cally linked data structures. This would allow one to ver-
ify algorithms in which the memory safety depends, for
instance, on the fact that a certain sequence is sorted. As
an example, we can mention programs manipulating red-
black trees in which case one needs to distinguish red and
black trees. Apart from that, tracking of the data stored
inside the dynamically linked data structure would allow
our tool to also check properties concerning that data.

Another line of research is a generalisation of our ap-
proach to concurrent programs. Here, an especially inter-
esting case is that of lockless concurrent data structures,
which are extremely difficult to understand and validate.
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