
Implementing Embedded Expert Systems
via Programmable Hardware

Mária Pohronská
∗

Institute of Computer Systems and Networks
Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava
Ilkovičova 3, 842 16 Bratislava, Slovakia

pohronska@fiit.stuba.sk

Abstract
The work deals with intelligent embedded systems, par-
ticularly with the problem of application of expert sys-
tems in embedded architectures. It summarizes the state
of art and challenges in areas of embedded systems and
rule-based expert systems, and gives motivations for im-
plementing expert systems in embedded architectures.

We design architecture of expert system and hardware
architecture of embedded system suitable for implemen-
tation of embedded expert systems. We also devise a
universal representation for knowledge bases of embedded
expert systems. We propose two methods of hardware ac-
celeration of inference in embedded expert systems. One
of the devised methods we experimentally evaluate and
claim its remarkable contribution to inference process of
expert systems and its suitability for utilization in embed-
ded expert systems. Based on the performed experiments
and acquired experience we synthesize a set of rules for
implementation of expert systems in embedded architec-
tures which contribute to the problem area of intelligent
embedded systems development.

The devised method for hardware accelerated inference
enables implementation of expert systems even in embed-
ded architectures where it has not been possible with the
current state of art, thus facilitating further adoption of
intelligent embedded systems.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Sys-
tems]: Real-time and embedded systems; I.2.1 [Artificial

∗Recommended by thesis supervisor: Assoc. Prof. Tibor
Krajčovič. Defended at Faculty of Informatics and Infor-
mation Technologies, Slovak University of Technology in
Bratislava on May 22, 2012.
c⃝ Copyright 2012. All rights reserved. Permission to make digital

or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies show this notice on
the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy other-
wise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from STU Press,
Vazovova 5, 811 07 Bratislava, Slovakia.
Pohronská, M. Implementing Embedded Expert Systems via Pro-
grammable Hardware. Information Sciences and Technologies Bulletin
of the ACM Slovakia, Vol. 4, No. 2 (2012) 10-19

Intelligence]: Applications and Expert Systems; I.2.4
[Artificial Intelligence]: Knowledge Representation For-
malisms and Methods—Representations (procedural and
rule-based); I.2.5 [Artificial Intelligence]: Programming
Languages and Software—Expert system tools and tech-
niques

Keywords
embedded systems, expert systems, hardware accelera-
tion, programmable hardware, real-time systems, intelli-
gent systems

1. Introduction
Embedded computer systems have become exceptionally
important in multiple domains that affect our daily life.
Statistics show that embedded microprocessors account
for more than 98 percent of all produced and sold micro-
processors - vastly surpassing computing power in the IT
industry [8]. A particular growth of their utilization has
developed in the area of smart card computing, produc-
tion control, automotive industry, network applications,
in medical applications and in personal handheld appli-
ances.

Resulting from their designation, embedded systems have
tough restrictions to their physical size, power consump-
tion, thermal emission and other attributes. As a result of
these restrictions, they usually dispose with limited com-
putational power, program and operating memory and
operate at low frequencies. They mostly employ specific
processors that are equipped with sophisticated instruc-
tion set tailored for their task.

Besides these technical considerations, the characteristic
and most challenging features of embedded systems are
connected with their strictly stated demands on reliability
and response time. As their small computational power
and the demand for fast and (particularly) guaranteed re-
sponse time are quite contradictory, the task of designing
reliable embedded real-time systems remains open prob-
lem since their introduction.

For the task of advanced diagnosis, monitoring, and con-
trol in various areas including production systems [10],
vehicle control, power plant control [22], medical appli-
cations[6] and many others, it is desirable to perform
knowledge-based computation. Knowledge-based systems
are also used in decision support applications which are
not restricted only to implementation on personal com-



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 4, No. 2 (2012) 10-19 11

puters but are also deployed on embedded and even hand-
held devices [20]. Deployment of decision support systems
on handheld devices has particularly promising perspec-
tive; as such systems can be very helpful in numerous
problem areas and have wide practical use.

However, implementation of knowledge-based systems in
embedded and real-time systems is nontrivial task which
has been addressed since the introduction of the embed-
ded computing concept. Angeli [1] states that for the
real-time control applications it is more appropriate to
use rule-based systems than model-based systems. Im-
plementation of knowledge-based control and reasoning
in embedded systems is currently achieved by application
of fuzzy control systems and expert systems adjusted for
the embedded environment. Both of these approaches
need to store and process the decision rules and utilize
the data from environment. As searching the rule base
and performing the inference process are computation-
ally intensive tasks, there is a necessity to optimize these
systems for employment in embedded computing.

In our work, we deal with rule-based expert systems and
possibilities of their implementation in embedded archi-
tectures and real-time systems. We discuss embedded
and expert systems’ properties and architectures to ad-
dress their suitability for building embedded expert sys-
tems and propose a representation of knowledge suitable
for utilization in these systems. We devise two methods
of utilizing programmable hardware for acceleration of ex-
pert system inference process and propose a set of rules
forming a method for implementation of embedded expert
systems.

2. Related work
In embedded systems problem domain, many problems re-
main open and are addressed by research activities. These
include the problem of advanced scheduling, maximizing
the computing power of the system, e.g. [3]; minimizing
the system’s power consumption, ensuring the stability
and robustness of the system, e.g. [5] and many other
challenges which are connected with the embedded sys-
tem design and implementation, including the problem
domain of hardware-software co-design.

In the domain of real-time systems, the mostly addressed
research tasks are connected with scheduling and include
the improvement of currently known scheduling methods,
both offline and online program analysis and inspection
and development of methods for benchmarking and com-
parison of scheduling algorithms. Determination of the
worst-case execution time of the program or its part is
the most challenging task in designing real-time systems
and must be given high priority in the process of their
development [14].

The problem of implementing rule-based systems in em-
bedded and real-time systems has been firstly compiled
by Laffey [13]. Afterwards, the works [4] and [15] pro-
vided improvement in this area by proposing the methods
for knowledge-base pre-compilation and parallelization of
the inference process. The recent works focus mostly on
development of specialized proprietary systems, e.g. [7].
Another challenging task in the domain of rule-based sys-
tems has been the knowledge acquisition and its trans-
formation in the set of rules in the system’s representa-
tion [12]. As this task requires cooperation with human

experts, it is a serious bottleneck in designing each new
expert system and has to be given appropriate attention
even in small-scale systems.

The problem of accelerating knowledge and data-based
systems has been addressed by several authors, however
the proposed approaches are highly diverse and no com-
mon methodology has been developed. We consider the
lack of a common approach to the problem of implement-
ing expert systems in embedded and real-time systems
the main limiting factor of the further development in
this area.

The most common approaches to knowledge and data-
based systems acceleration are based on software opti-
mization of data storage methods, searching and pro-
cessing algorithms, e.g. the Rete algorithm by C. Forgy
[9] and caching techniques. Authors of [2] describe a
technique and architectures for hardware acceleration of
database operations using content-addressable memories.
However, as their approach is oriented on characteristic
database operations, it is unemployable in our area of in-
terest.

Several works have addressed the problem of implement-
ing knowledge-based systems in real-time and embedded
systems. In [4] authors present an expert system in which
the knowledge base is automatically precompiled, paral-
lelized and optimized for the real-time behaviour. Sys-
tems presented in [15] and [19] come with approach of
compiling the knowledge base into the AND/OR network.
Both works focus on careful knowledge base preparation,
in order to avoid redundant and problematic parts and op-
timize the search space. The common drawback of these
approaches is that the knowledge base cannot be updated
during the system’s operation.

The work [11] presents specialized hardware architectures
for the realization of a simple inference engine. The ar-
chitectures are focused on the problem of detecting in-
put events and finding corresponding rules in the system.
The work states this being effectively a pattern matching
problem. The presented system is simplistic, as it pro-
vides only one output bit. However, authors claim that
the developed architectures are sufficient for their partic-
ular application.

In the work [21], author presents implementation of an
embedded expert system that utilizes the Lernmatrix data
structure for the knowledge base representation. This
structure is mentioned as a special neural network struc-
ture. In fact, it can be reduced to a simple associative
memory structure. The implementation of the knowledge
base by the associative data structure leads to very short
and particularly, linear time of search and reasoning.

Several commercial knowledge-based system platforms
that are aimed for implementation in real-time systems
exist, nevertheless, we have not encountered with a com-
mercial platform aimed for embedded implementation.

3. Embedded expert systems architectures
This section deals with the architectures of embedded and
expert systems suitable for implementation of embedded
expert systems. Firstly, we select architectures of embed-
ded systems that are theoretically capable of performing
rule-based reasoning. Secondly, we propose architecture



12 Pohronská, M.: Implementing Embedded Expert Systems via Programmable Hardware

of expert system aimed for embedded implementation.
Selection of these architectures is the essential point in
our work, as it forms a base for its further development.

3.1 Embedded architectures
We have dealt with the analysis of embedded architectures
suitable for implementation of embedded expert systems
in one of our previous works [17]. From the available
and commonly used architectures of embedded systems,
we have selected two architectures that are eligible for
implementing the computation and data-hungry expert
inference process.

The first selected is the architecture with a power-
ful universal processor. Main features of this architec-
ture are processor capable of running an operating system
and relatively large amount of program and operational
memory. Such architecture is being used mostly in user-
oriented embedded systems focused on performance, user
interface and applications.

The most straightforward solution for implementing ex-
pert systems in such architectures is utilization of an ex-
isting expert system shell, e.g. CLIPS1. Apart from inter-
preting the expert system commands in real-time, CLIPS
offers pre-compilation of the expert system to a self-stan-
ding application which performs the expert system func-
tionality much more effectively. Program memory de-
mands of such pre-compiled expert system are in hundreds
of kilobytes and more [17]. It is clear that this approach is
not suitable for simpler, less powerful or more specialized
embedded systems that do not provide mechanisms for
standard application deployment and enough hardware
resources for the demanding expert system computations.

The second selected architecture suitable for implement-
ing embedded expert systems is architecture with pro-
grammable hardware working as an autonomous
unit. Utilization of programmable hardware for imple-
mentation of demanding computations in expert systems
appears to be a promising possibility of realization of em-
bedded expert systems. The programmable hardware is
intended to serve as an autonomous computation unit,
loosely coupled with the system processor. On contrary
to tightly coupled configurable architectures which advan-
tage of implementing programmable hardware directly on
the processor chip, the loosely coupled configurable archi-
tectures employ programmable hardware connected with
the processor via external input/output pins. Tightly
coupled architectures are usually aimed for computations
requiring frequent communication with the processor and
generally provide low logic capacity. As we need to per-
form the demanding computations autonomously and with
minimum amount of communication, the loosely coupled
architecture suits our needs closely. Another advantage
of utilization of programmable hardware in embedded ar-
chitectures stems from the programmable hardware’s ver-
satility that allows the developer to customize the design
and makes the architecture more universal.

The connection between the programmable hardware and
the processor can be realized in several ways, to choose the
most suitable option we have to consider data throughput,

1CLIPS is probably the currently most popular expert
system shell. It is an open source shell written in C.
Project homepage: http://clipsrules.sourceforge.net/

latency of communication and overall embedded system
specifications. Considerable connection options are:

• Direct connection to the processor in a co-processor
mode

• Connection via the parallel system bus

• Direct memory access

• Connection via a serial bus

Connecting programmable hardware directly to the pro-
cessor provides communication with low latency and (de-
pending on number of reserved connections) high data
throughput. Drawbacks of this approach are high de-
mands on hardware resources and service resources.

Connection via parallel bus is simple in terms of ser-
vice and provides high data throughput. It is also the
most universal method in the terms of utilization of pro-
grammable hardware for multiple purposes. The draw-
backs of this approach are relatively high hardware re-
source consumption and high communication latency.

The direct memory access option is suitable for imple-
menting computational-intensive algorithms that process
large amount of data, without need of the assistance from
the processor. However, with this approach it is impossi-
ble to guarantee the response time of the system.

Connecting the programmable hardware via serial bus is
the most simple and least expensive method that saves
hardware resources and has low service demands. How-
ever the high latency and low data throughput make it
unsuitable for most hardware acceleration tasks.

3.2 Expert system architecture
Implementing expert systems in embedded architecture
is connected with various problems that make the spread
of embedded expert systems practically impossible. For
enabling the further development in this area, it is firstly
needed to specify the expert system architecture that is
suitable for use in embedded expert systems. Within our
work we have devised such specification which not only
suits our needs but is also utilizable generally in the pro-
cess of embedded expert systems’ development. We have
defined an expert system suitable for embedded deploy-
ment to be a software system formed of:

• facts and rules that make a knowledge-base of the
system

• mechanisms of computation of the system’s outputs
according to the knowledge-base rules

• mechanisms for transforming the system’s inputs
and outputs to expert system facts and vice-versa

• system resources for hardware service

• user interface modules

• mechanisms for providing security and response time
guarantees.



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 4, No. 2 (2012) 10-19 13

Figure 1: Architecture of an expert system suitable for deployment in embedded expert systems.

We consider the system to be a rule-based system , with
strictly stated demands on the knowledge-base. The ex-
isting approaches in this area generally utilize a tree
formed of AND/OR rules as their knowledge-base, as the
form of tree provides the means to guarantee that the
computation will end in finite time. The common uti-
lization of facts that gain yes/no values simplifies the im-
plementation of the inference mechanism and divides the
problems of input processing and the expert system infer-
ence. Regarding these reasons and to sustain the continu-
ity with previous works we have decided also to use this
form of knowledge-base. The knowledge-base therefore
has to be optimized before its employment in embedded
expert systems. The proposed architecture of an expert
system suitable for deployment in embedded expert sys-
tems is shown in Figure 1.

Standard expert systems are mostly focused on user inter-
action and presentation of knowledge. On contrary, em-
bedded expert systems are focused on the environment
and the controlled process, with the need of periodical
operation and strictly stated demands on their response
time. The proposed system is directly connected to the
controlled process and it collects most from its inputs
from the environment. The user interface serves mainly
as an information screen or for serving the operator in-
puts. The proposed architecture also lacks the reasoning
explanation module and module of knowledge retrieval
from user, which are commonly present in regular expert
system architectures.

Typical operation of the proposed expert system is peri-
odical and operates with stated frequency, so it is manda-
tory to finish all computations and provide corresponding
outputs within the repetition interval. It is thus a real-
time system (possibly also a hard real-time system) which
performs these operations in each cycle:

1. Processing the system inputs and transforming the
values to representation of expert system facts.

2. The active facts are evaluated and fire a set of rules
which eventually activate other system facts.

3. Evaluation of rules is repeated until the inference
process gains stable state (no new facts are acti-
vated).

4. 4. The inference outputs are transformed to actual
system outputs (e.g. indication, control, alarm).

4. Knowledge base for embedded expert systems
This section describes the proposed specifications of the
knowledge bases suitable for utilization in embedded ex-
pert systems. Within our work we have also developed
a universal XML scheme for representation of knowledge
in the form of rules which is described further in this
section. This paragraph is followed by definitions of key
knowledge-base parts.

A fact in the knowledge base represents value of one mon-
itored system state. It consists from natural language de-
scription of the monitored value and from the value itself.
The allowed values are yes/no.

A rule in the knowledge base is defined as an if-then rule
with a logic term consisting of available facts and any
combination of logic operators NOT, AND, OR, XOR,
NAND, NOR, XNOR on the right side; and a set of out-
put facts with assigned values on the right side. Each rule
can be expressed by a corresponding Boolean function.

The knowledge base of the embedded expert system is
comprised of a set of facts and rules and has to satisfy
these requirements:

• The form of the knowledge base is a tree, i.e. it
cannot contain loops.

• One output fact is allowed to be modified by only
one rule.

• The knowledge base must contain all facts, includ-
ing those potentially emerging during the system’s
operation.

An example rule of the knowledge base is shown in the
Figure 2. For the sake of facilitating knowledge base re-



14 Pohronská, M.: Implementing Embedded Expert Systems via Programmable Hardware

usage and sharing and for simplifying its creation, modi-
fication and understanding, we have developed a univer-
sal XML schema for expressing embedded expert system
knowledge. Next paragraph shows an example rule in this
representation.

<rule>

<and>

<condition GT="" LT="" EQ="" YN="YES">

<objective>Building Control System ON

</objective>

</condition>

<condition GT="3" LT="" EQ="" YN="YES">

<objective>Secure room opened Timer

</objective>

</condition>

<condition GT="" LT="" EQ="" YN="YES">

<objective>Secure Door opened sensor

</objective>

</condition>

</and>

<output YN="Yes">

Secure Door opened Alarm (Audible alarm)

</output>

Audible alarm: Secure Door opened Alarm

</rule>

The original knowledge base describing the desired prob-
lem naturally does not comply with the strict require-
ments of the embedded expert systems. After the cre-
ation of the original knowledge base, the process of its
optimization follows, which consists mainly of:

• transformation of original rules into the required
form consisting of allowed logical operations,

• removing the loops from the original knowledge base,

• compaction of rules, to ensure that an output fact
is modified by only one rule,

• detection of all potentially emerging facts and their
insertion into the knowledge base,

• dividing the originally described facts into: 1. For-
mula for determining the fact value; 2. Name and
value of the fact.

Determination of the fact values according to the given
formulas is provided by fact interpretation modules and
can itself be a demanding task for the embedded system.
The inference module provides rule evaluation and works
with the provided fact names and values. As interpreta-
tion and inference processes are of different nature and
both of them can induce significant load to the system,
we consider diving these two tasks into separate modules
appropriate.

5. Accelerating embedded expert systems
by means of programmable hardware

We have proposed two approaches to providing hardware
assistance in embedded expert systems, with the utiliza-
tion of programmable hardware. The motivation was to:

• accelerate the expert system inference process,

• unload the processor from demanding computations,

Figure 3: Embedded system with pattern match-
ing hardware.

• extend the facilities of response time estimation,

• enable fulfilling system’s response time guarantees.

5.1 Pattern matching assistance
The performed analysis shows that the most demanding
task in the expert system inference process is rule-base
searching and detection of potentially active rules (rules
that use recently updated facts). Acceleration of this
process can significantly contribute to the system per-
formance and unload the processor from this demanding
task. This approach has been described by [11] where
authors developed a simple hardware architecture to per-
form pattern matching. Application of similar, more com-
plex architectures has potential to contribute to expert
system inference process, mainly in systems with exten-
sive knowledge-bases.

We have designed a hardware architecture for performing
the pattern matching task, which is fully described in [16].
The architecture exploits DMA access to perform the pat-
tern matching process independently from the processor.
The block architecture illustrating device’s operation is
shown in Figure 3. Typical operation of the system is
then:

1. Load knowledge-base data (in specified format) to
memory.

2. Evaluate facts and create list of recently updated
facts.

3. Initialize the pattern matching device (include infor-
mation on memory section containing data, memory
section reserved for results, the searched pattern).

4. Enable the pattern matching operation.

5. Perform other system tasks. When the pattern
matching process is finished (signaled by an inter-
rupt) read the values and optionally return to 3.

6. Optionally return to 2.

The pattern matching acceleration is applicable in em-
bedded systems providing enough memory, a DMA unit
and memory management mechanisms. Its main purpose
is to unload the processor from the time-consuming task
of searching the memory. Following paragraphs summa-
rize the positive and negative aspects of the approach.
Positive aspects are:



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 4, No. 2 (2012) 10-19 15

Figure 2: A sample rule of an embedded expert system.

• Unloading the processor of the demanding task of
pattern matching.

• The hardware architecture is common to all embed-
ded expert systems, providing that the memory rep-
resentation of rules will not change.

• Utilization of the acceleration hardware does not
put any limits to the knowledge base.

• The developed concept and architecture are univer-
sal and usable also in non-embedded applications.

The negative aspects are:

• Need for additional hardware in the embedded sys-
tem.

• Necessity of the DMA unit and memory manage-
ment mechanisms.

• Implementation of the DMA access controller re-
quires complex architecture to be implemented on
the side of programmable hardware.

• Utilization of the DMA access requires development
of more complex software drivers on the side of the
master system.

5.2 Hardware implementation of rules
Another proposed approach to inference acceleration is
implementing the whole reasoning process in hardware.
The acceleration hardware takes values of all system facts,
evaluates the system rules and provides the resulting sys-
tem state - values of all facts after the inference. It is
connected to the processor via parallel system bus as a
peripheral device; it also utilizes a dedicated hardware
connection to one of the processor’s pins to provide the
interrupt signal. Operation of the accelerated system is
illustrated in the Figure 4 and described in the following
paragraph.

1. To initialize the inference computation, all fact val-
ues have to be written into the device. Depending on
number of facts, several bus write cycles are needed
to transfer all values.

Figure 4: Hardware inference module - connection
and communication scheme.

2. After last portion of data has been written, the
acceleration device applies the rules and computes
next inference state. The inference process contin-
ues until there are no new rules fired and values of
output facts do not change.

3. After the inference has been completed, the Done
signal (serving as system interrupt) is activated.

4. Active signal of the interrupt (Done) informs the
system on the successful completion of the infer-
ence. The system can then read the results from
the device.

5. The system reads the results from the device. De-
pending on number of facts, it may take several bus
read cycles.

6. The acceleration device is ready to receive new data.

The inference process itself is performed by a combina-
tional logic inside the programmable circuit, which is ca-
pable of computing one inference iteration at a time. The



16 Pohronská, M.: Implementing Embedded Expert Systems via Programmable Hardware

process is controlled by a control unit which decides
whether the computation has finished or there are more it-
erations needed. Depending on the knowledge-base struc-
ture and the current state of the system, it can take dif-
ferent number of iterations to finish the inference process.
While it is difficult to determine the actual number of
iterations needed, it is possible to state maximum num-
ber of inference iterations which equals to the maximum
depth of the knowledge-base tree. It is thus possible to
state maximum computation time of the inference.

The rules are implemented by a simple combinational
logic consistent with the knowledge-base. Following para-
graph shows an example of rules implemented in VHDL.

fact_outputs(2) <= (fact_inputs(27) or

fact_inputs(28)); --- Battery fault

fact_outputs(1) <= (fact_inputs(2) and

fact_inputs(29)); --- Battery alarm

Implementation of rules via dedicated combinational logic
elements enables parallel and particularly, fast rule eval-
uation. The actual time needed to perform an iteration
of the inference process is thus defined by overall latency
of the combinational logic and depends on the rules com-
plexity and the programmable hardware technology limi-
tations. The overall inference computation time depends
on this limitation, duration of the read/write cycles and
the number of inference iterations. The inference compu-
tational complexity can thus be supposed linear, depen-
dent on the number of iterations.

Implementation of the whole inference process via pro-
grammable hardware can lead to significant acceleration
of computations. However, this approach is only appli-
cable with utilization of the restricted knowledge base
format (specified in the previous section) and is also re-
stricted by the programmable device’s capacity. Positive
aspects of the approach are:

• The hardware inference computation is likely to per-
form much faster than the software approach.

• The main processor is completely unloaded from the
inference computations.

• The hardware inference device requires only mini-
mum system overhead.

• Amount of transferred data between processor and
the device is much lower than amount of transferred
data between the processor and memory when using
the software approach.

• Re-configurability of the programmable hardware
allows us to change the knowledge base of the sys-
tem.

• Utilization of programmable hardware facilitates im-
plementation of various dependability solutions, e.g.
implementing redundant inference units.

Negative aspects of the approach are:

• Need for additional hardware in the embedded sys-
tem.

• Connecting the reconfigurable device to the system
requires additional hardware and software overhead.

• The knowledge-base cannot be modified during the
system’s operation.

6. Transforming knowledge-base to hardware
As can be understood from the previous section, the hard-
ware implemented inference acceleration has potential to
significantly contribute to the embedded expert system
reasoning process. However, the reasoning hardware ar-
chitecture is specific and differs for each knowledge-base.
Thus it is necessary to create new hardware architecture
for each knowledge-base and recompile it each time the
knowledge-base is changed. As this is rather demanding
process that involves knowledge of the hardware archi-
tecture and actual work of a hardware designer, it would
demotivate the usage of the proposed approach even when
the acceleration would be remarkable.

The aim of our work was to provide new means to imple-
ment embedded expert systems, even in the architectures
and environments where it hasn’t been possible before.
The proposed hardware implemented inference approach
appears to be capable of such contribution; however the
demanding process of the architecture creation is ineffec-
tive and would discourage developers from exploiting this
approach.

With this motivation we have developed an automated
translation tool Knowledge base parser that transforms
the knowledge-base in XML format to the VHDL repre-
sentation of the corresponding hardware acceleration de-
vice. The resulting device description corresponds with
the input rule-base and is fully accommodated to the sys-
tem bus width and facts count, providing appropriate
communication functionalities. The tool is described in
more detail in one of our previous works [18].

Using the developed tool it is easy to generate a hard-
ware architecture corresponding to any knowledge base
fulfilling the stated requirements. The provided architec-
ture is then compiled using standard software tool for the
desired programmable hardware and is ready to be pro-
grammed into the programmable device. The knowledge
base parser tool thus contributes to the embedded expert
systems development and maintenance process.

7. Evaluation
To evaluate the results of our work, we have performed
several experiments with one of the developed architec-
tures for hardware acceleration. We have decided to focus
on the hardware implementation of inference approach, as
this appeared more promising in the means of acceleration
capabilities and versatility. We focused on the attributes
of the architecture’s resource consumption and accelera-
tion capabilities.

7.1 Experimental setting
For experiments, we have used an embedded development
kit equipped with Intel PXA255 XScale processor, provid-
ing hardware interface for connecting additional module
as asynchronous I/O device utilizing the system’s parallel
communication bus. For implementation of the acceler-
ation hardware device, we have used a module equipped
with the Altera Cyclone EP1C6 - an FPGA programmable
device containing 5,980 logic elements and 92,160 RAM



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 4, No. 2 (2012) 10-19 17

bits. In our design, only the logic elements are utilized.
The output Done has been connected to the general in-
put/output pin of the processor configured to serve as an
external interrupt input. We have used Linux 2.4.19 op-
erating system and own drivers for communication with
the acceleration device.

For the experiments we have implemented a knowledge-
based system that operates in two modes. In mode one,
assistance of the acceleration hardware is used for the
computation. In mode two, inference is computed in soft-
ware, using the näıve reasoning method. In the näıve
reasoning method, all rules have to be searched and eval-
uated for each iteration of inference, what counts for com-

putational complexity of O
(
F (RF )I

)
where F states for

number of facts in the system, R states for number of
system’s rules and I states for the number of iterations
needed to finish the inference.

Several approaches to acceleration of the software com-
putation exist, some of them claiming even linear com-
putational complexity. However, in these approaches the
computational complexity is decreased at the expense of
memory complexity. As the memory consumption is crit-
ical in embedded applications, these approaches are not
suitable for our consideration. Furthermore, precise al-
gorithms used in these approaches are very difficult to
obtain, some of them being subject of copyright.

For the experiments, we have used three various sources
of input data. Firstly, we have manually created several
knowledge bases representing real problems of common
knowledge-based systems domains. As manual creation
of reasonable knowledge bases is time consuming, we have
created a random generator of knowledge bases that have
logical structure similar to real ones and are suitable for
our experiments. These knowledge bases were particu-
larly useful in experiments with architecture resource con-
sumption. For experiments with the computation time,
we have created knowledge bases of a structure that max-
imizes iteration count.

7.2 Architecture resource consumption
Resource consumption of the developed architecture is
one of its key properties as it states the requirements
for the needed programmable hardware and influences the
added cost of the solution. By experiments with the hard-
ware resource consumption we intended to verify feasibil-
ity of the proposed solution. Other goals of the experi-
ments were to:

• Determine the hardware resource consumption of an
architecture representing a small expert system.

• Determine the limitations for the knowledge-base
size and complexity, when assuming utilization of
standard programmable hardware.

• Determine the resource consumption dependency on
the knowledge-base size.

Each provided knowledge base has been translated into
its VHDL hardware representation using the developed
translation tools and placed & routed to the Altera Cy-
clone EP1C6 FPGA. The results are summarized in Table
1.

Table 1: Hardware resource consumption of the
inference architecture.
Knowledge
base

Fact
count

Rule
count

LEs
FPGA
resources (%)

Car Simple 29 7 119 1.99
Secure System 40 17 16 2.66
Car Complex 105 52 333 5.57
100 99 100 338 5.65
Random 1 462 184 1755 29.35
1000 999 1000 3379 56.51
1500 1499 1500 5106 85.38
Random 2 1514 626 5812 97.19
1600 1599 1600 - >100

Figure 5: Linear interpolation of the resource con-
sumption values.

We can see that a simple FPGA is suitable for implemen-
tation of a relatively extensive knowledge-based system.
Furthermore, the obtained results show that dependency
of resource demands from system’s fact and rule count can
be considered linear, as can be seen in Figure 5. Thus it
is theoretically possible to implement acceleration of even
more complex knowledge-based systems into larger pro-
grammable devices.

7.3 Inference acceleration
The acceleration capabilities of the architecture were mea-
sured by comparing computation time of software imple-
mented and hardware accelerated rule-based reasoning.
For measuring computation duration we have used the
tool time provided by the operating system. The ob-
tained results correspond with theoretically stated com-
putation complexity values. The software computation
time rapidly rises with number of iterations in the in-
ference process, easily reaching values unsuitable for im-
plementation in real-time system. On the other hand,
the hardware computation time rises linearly with the in-
ference count, what gives it predispositions for real-time
implementation. The count of iterations needed for the
inference process is not directly dependent form the num-
ber of facts and rules in the knowledge-base, so even large
knowledge-bases can lead to short computation times.
However, it is hard to predict the actual iteration count,
so the embedded system designer always needs to consider
the maximum possible number.

Figure 6 shows dependency of computation time from it-
eration count up to 1599 iterations, for both software and



18 Pohronská, M.: Implementing Embedded Expert Systems via Programmable Hardware

Figure 7: Dependency of inference acceleration
(in %) from iteration count.

hardware implemented reasoning. The results are shown
in logarithmic scale to make data readable. Figure 7
shows dependency of acceleration (hardware vs. software
inference in %) from inference iterations.

8. From knowledge to hardware accelerated
embedded expert system

An embed expert systems is a specific instance of em-
bedded system that is specialized for a particular task
and environment. Its development thus includes stan-
dard methods applied in development of embedded sys-
tems, e.g. hardware-software co-design. The develop-
ment of an embedded expert system also requires extrac-
tion of knowledge and creation of knowledge-base. In our
work we have described a process of optimizing standard
knowledge-bases for implementation in embedded expert
systems. In the work, we consider four suitable options
of implementing embedded expert systems:

• Software expert system implemented on a universal,
powerful processor.

• A simple expert system executed directly in pro-
gram - the rules are embedded in program code.

• Expert system with hardware inference computa-
tion.

• Expert system with hardware mechanism for pat-
tern matching.

Based on performed experiments and experience gained
through the work we have proposed a set of heuristic
rules on implementing embedded expert system, focused
on choosing the implementation approach from the men-
tioned available options. The purpose of these rules is to
provide support in the decision process and indirectly in-
form about the available options. Following inputs figure
in the decision process:

• Average number of inference iterations.

• Size of system’s operating memory and availability
of memory management mechanisms.

• Processor computing power - relative to the needs
of the particular method.

• Size of the system’s program memory.

• Designation of the embedded system.

• Availability of programmable hardware.

9. Conclusions and future work
Expert systems are one of the approaches to implementa-
tion of intelligent systems; in embedded applications they
are particularly suitable for control and monitoring sys-
tems and decision support systems. They are currently
not used widely, because of limiting factors in embed-
ded systems, such as their computational power, available
memories or timing requirements. Development of em-
bedded expert systems stays an open problem area with
many challenges as development of appropriate hardware
architectures, mechanisms of response time guarantee or
methods of input/output processing. Another serious is-
sue is the absence of common approach to developing em-
bedded expert systems.

The main goal of our work was to facilitate implemen-
tation of embedded expert systems even in applications
where it hasn’t been possible before. We dealt with meth-
ods of inference acceleration and also touched the problem
of common approach to developing these systems. The
particular goals of our work were:

• development of method for expert systems acceler-
ation applicable in embedded architectures,

• contribution to the problem area of response time
estimation,

• contribution in the problem area of embedded ex-
pert systems development.

We have addressed the issues by developing two hardware
acceleration schemes for embedded expert systems, by
specifying the form of knowledge-base suitable for embed-
ded expert systems, by developing a tool for automated
creation of hardware architecture from the knowledge-
base and by stating heuristic rules supporting the decision
on the appropriate embedded expert systems implemen-
tation method selection.

We see the possible extension of our work in supplement-
ing the designed embedded expert systems development
toolchain by adding new tools for knowledge-base creation
and optimization, as this process stays a significant bottle-
neck in expert systems’ development process. The results
of our work can be further extended to provide founda-
tion for implementation of highly reliable embedded ex-
pert systems, reconfigurable embedded expert systems or
hardware accelerated desktop systems.

Acknowledgements. This work has been partially sup-
ported by the Grants No. 1/1105/11 and 1/1008/12 of
the Slovak VEGA Grant Agency. This work has been
materially supported by the project ITMS 26240120005
supported by the Research 7 Development Operational
Programme founded by the ERDF.

References
[1] C. Angeli. Online expert systems for fault diagnosis in technical

processes. Expert Systems, 25(2):115–132, 2008.
[2] N. Bandi, S. Schneider, D. Agrawal, and A. El. Hardware

Acceleration of Database Operations Using Content-Addressable
Memories. In Proceedings of the First International Workshop on
Data Management on New Hardware, 2005.



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 4, No. 2 (2012) 10-19 19

Figure 6: Software vs. hardware accelerated inference computation time (log. scale).

[3] J.-J. Chen and C.-F. Kuo. Energy-Efficient Scheduling for
Real-Time Systems on Dynamic Voltage Scaling (DVS)
Platforms. Real-Time Computing Systems and Applications,
International Workshop on, 0:28–38, 2007.

[4] R. K. Chun. Software integration of real-time expert systems.
Control Engineering Practice, 4(1):83–88, 1996.

[5] E. A. Coyle, L. P. Maguire, and T. M. McGinnity. Self-repair of
embedded systems. Engineering Applications of Artificial
Intelligence, 17(1):1–9, 2004.

[6] Devraj and R. Jain. PulsExpert: An expert system for the
diagnosis and control of diseases in pulse crops. Expert Systems
with Applications, 38(9):11463–11471, 2011.

[7] N. Dlodlo, L. Hunter, C. Cele, A. F. Botha, and R. Metelerkamp.
A decision support system for wool classification. Autex Research
Journal, 9(2):42–46, 2009.

[8] C. Ebert and C. Jones. Embedded Software: Facts, Figures, and
Future. Computer, 42(4):42–52, 2009.

[9] C. L. Forgy. Rete: A fast algorithm for the many pattern/many
object pattern match problem. Artificial Intelligence, 19(1):17–37,
1982.

[10] R. Garcia and J. L. Calvo Rolle. Supervised rule based
thermodynamic cycles design technique. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 6679
LNAI(PART 2):327–335, 2011.

[11] M. R. Gómez, J. E. Ventosa, and G. A. Aramendía. Expert System
Hardware for Fault Detection. Applied Intelligence, 9(3):245–262,
1998.

[12] P. Jackson. Introduction to Expert Systems. Addison-Wesley,
1999.

[13] T. J. Laffey, P. A. Cox, J. L. Schmidt, S. M. Kao, and J. Y. Read.
Real-time knowledge-based systems. AI Mag., 9(1):27–45, 1988.

[14] I. Lee, J. Y.-T. Leung, and S. H. Son. Handbook of Real-Time and
Embedded Systems. Chapman & Hall/CRC, 2007.

[15] P. Morizet-Mahoudeaux. On-Board and Real-Time Expert
Control. IEEE Expert: Intelligent Systems and Their Applications,
11(4):71–81, 1996.

[16] M. Pohronská. Využitie programovatel’ného hardvéru na
realizáciu expertných vnorených systémov. Disseration thesis,
Slovenská technická univerzita, 2012.

[17] M. Pohronská and T. Krajčovič. Implementation of Expert
Systems in Embedded and Real-Time Systems. In V. N. Ján
Kollár, editor, Proceedings of the Tenth International Conference
Informatics 2009, volume 10, pages 259–264. Department of
Computers and Informatics FEEI TU of Košice, 2009.

[18] M. Pohronská and T. Krajčovič. Hardware-accelerated Rule-based
Systems for Embedded Platforms. In Proceedings of the

International Conference CYBERNETICS AND INFORMATICS
201, pages 69–70. Vydavatel’stvo STU, 2012.

[19] X. L. L. X. L. L. K. A. Qian Y. LUBRES: An expert system
development and implementation for real-time fault diagnosis of a
lubricating oil refining process. Expert Systems with Applications,
35(3):1252–1266, 2008.

[20] V. Stanchev. Consulting expert system for coreless induction
furnaces control. In Proceedings of 2006 IFAC Workshop on
Energy Saving Control in Plants and Buildings, 2006.

[21] A. Wichert. Associative diagnosis. Expert Systems, 22(1):26–39,
2005.

[22] W. Zhao. A fault diagnosis and operation advising cooperative
expert system based on multi-agent technology. In Power Plants
and Power Systems Control 2006, pages 195–200, 2007.

Selected Papers by the Author
M. Pohronská, T. Krajčovič. Implementation of the Handheld

Decision Support System for Agriculture and Home Gardening.
In Emerging Trends in Computing, Informatics, Systems
Sciences, and Engineering, in press, 2012. Springer.

M. Pohronská, T. Krajčovič. Embedded System Architecture for
Real-time Rule-based Reasoning. 2nd Eastern European
Regional Conference on the Engineering of Computer Based
Systems Proceedings, pages 85–91, Bratislava, Slovakia, 2011.
CS IEEE Press.

M. Pohronská, T. Krajčovič. Implmentation of Multiple Hardware
Watchdog Timers for Enhancing Real-Time Systems Security. In
Eurocon 2011 Proceedings, Lisboa, Portugal, 2011. IEEE.

M. Pohronská, T. Krajčovič. Using Multiple FPGA Implemented
Watchdogs for Improving of Embedded Systems Reliability.
Journal of Cybernetics and Informatics, Vol. 11, pages 41–48,
2010.

M. Pohronská, T. Krajčovič. Embedded Systems with Increased
Reliability Using the Multiple Watchdog Timers Approach. In
Jiří Pinker, ed. 2010 International Conference of Applied
Electronics Proceedings, pages 273–276, Pilsen, Czech Republic,
2010. IEEE.

M. Pohronská, T. Krajčovič. Embedded Systems with Increased
Reliability Using the Multiple Watchdog Timers Approach. In
Jiří Pinker, ed. 2009 International Conference of Applied
Electronics Proceedings, pages 207–210, Pilsen, Czech Republic,
2009. IEEE.

M. Pohronská, P. Malík, M. Baláž. FPGA implementation of fully
parallel fast MDCT algorithm. Eurocon 2009 Proceedings, pages
161–166, Saint Peterburg, Russia, 2009. CS IEEE Press.


