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Abstract

Network throughput increase is usually associated with
replacement of communication links and appropriate net-
work devices. This approach is usually intrusive, expen-
sive and nevertheless time consuming. On the other hand
it is necessary to bear in mind that effective and less intru-
sive increase of network throughput can be achieved via
the improvement of existing protocol stack - especially
network and transport layer protocols.

In this paper we propose an advanced notification sys-
tem for TCP congestion control called ACNS (Advanced
Congestion Notification System). This new approach al-
lows TCP flows prioritization based on the flow age and
carried priority. The aim of this approach is to penalize
old and greedy TCP flows with a low priority in order to
provide more bandwidth for young and prioritized TCP
flows while providing more accurate details for loss type
classification which is especially useful in wireless envi-
ronment. Using ACNS specific TCP end nodes can be
informed how to modify the size of their congestion win-
dow. This allows us to notify TCP end nodes sooner
than the congestion results in packet loss. By means of
penalizing and prioritizing specific TCP flows significant
improvement of network throughput can be achieved.
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1. Introduction

Nowadays it is well established that TCP and UDP are
the dominant transport protocols. TCP apart from UDP
offers reliable communication between two end nodes over
unreliable IP communication channel. As a result TCP is
mainly used for reliable data transfers and is called as one
of the core protocols of the Internet protocol suite [23].
Main TCP features are reliability, full duplex, flow con-
trol, multiplexing, connection oriented and variable trans-
fer speed [16, 22].

The very first version of the most common transport pro-
tocol TCP was introduced in RFC793 [8]. First well estab-
lished TCP variant was introduced in 1988 and was called
TCP Tahoe. TCP Tahoe includes three key techniques:
slow start, congestion control and fast retransmission. To
match the increasing traffic requests (bandwidth, delay,
etc.), it was necessary to improve not only the hardware
part of the communication networks, but the software
part (protocol stack) as well. From the TCP point of view
these improvements were related to new key techniques as
well as to changes in congestion control. Improvements of
the TCP, mostly called TCP variants or extensions, are
mainly focused on the best and most effective usage of
available communication lines [3, 6].

2. Related work

First TCP improvements focused on higher performance
were published in [16]. Since 1992 [25], there have been
many new TCP variants which were aimed to increase
TCP performance. In general we can recognize two ways
of dealing with congestion and congestion control. First
way uses implicit feedback gathered by the TCP end nodes
that do not use any additional system but use only in-
formation gathered during their own observation of the
network and congestion in the network.

2.1 Wired networks

TCP variants using implicit feedback can be divided into
two main groups based on the end network type. Thus
we can recognize TCP variants suitable for wired access
networks and TCP variants for wireless access networks.
Moreover each of these two groups can be further divided
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based on the congestion detection [14]. One subgroup of
TCP variants uses packet loss as a sign of existing and
ongoing congestion in the network. This detection is reli-
able however on the other hand TCP variants using this
detection are characteristic with worse fairness, especially
in competition with TCP variants using increased delay
as a sign of congestion. The reason is that few moments
before the congestion queues are getting filled up, packets
spent wait more time in the queues and thus the whole
round-trip time (RTT) is increased. At this point second
group of TCP variants using increased latency in the net-
works (result of full queues) is detecting congestion and
slows down the transmission (decreases the size of the
congestion window) However TCP variant from the first
group have not detected any packet loss so far so they are
not aware of any upcoming congestion. As a result they
will not slow down but moreover they will increase the
size of the congestion window.

Main packet loss based TCP variants are TCP Reno, TCP
NewReno, BIC, CUBIC and SQUARE [6, 1]. Important
delay based TCP variants are TCP Vegas, TCP Illinois,
SyncTCP and NF-TCP [24, 15]. Apart from above clearly
defined groups there are some TCP variants which used
combine approach - Fast TCP, Hamilton TCP, Compound
TCP and RADIC-TCP [9].

2.2 Wireless networks

Original TCP was developed for wired networks there-
fore the use of this protocol in wireless environment often
leads to performance degradation. The reason behind this
low performance lays in the original TCP design where it
was supposed that every packet loss would be a result of
congestion and not a result of errors in communication
channel. However as it well known wireless environment
is especially susceptible to signal interference which leads
to higher bit error rate. As a result damaged packets are
dropped by lower OSI model layers and TCP reacts to
these drops of faulty packets as to standard drops due to
congestion. TCP variants for wireless networks are try-
ing to minimize this issue. We can recognize the same
division into packet loss based, delay based and combined
TCP variants.

Main packet loss based TCP variants are TCP Westwood,
TCP Hybla and TCP Jersey[7]. Important delay based
TCP variants are JTCP and EJTCP [13]. Apart from
above clearly defined groups there are some TCP vari-
ants which used combine approach and thus need sepa-
rate category - TCP Veno, TCP Cerl, Compound TCP+
20, 17].

All these variants have one thing in common: they do
not make any steps for congestion avoidance unless the
congestion is detected by TCP end nodes [5].

2.3 Explicit feedback

More accurate reaction to upcoming congestion can be
achieved using some kind of notification system which in-
forms TCP end nodes about the situation in the network
using the information gathered from the nodes in the net-
work. Similar approach can be achieved while using Ex-
plicit Congestion Notification (ECN) system. TCP end
nodes allow nodes in the network to inform them about
the situation in the network and give them some kind of
feedback.

Figure 1: ACNS overview.

Feedback is transferred within IP/TCP headers and is
encoded into these headers instead of dropping such a ca-
pable packets. As a results TCP sender will decrease the
congestion window. However this feedback is sent within
all existing TCP flows which support ECN apart from any
flow characteristic. The only sent feedback stands for the
order to decrease the size of the congestion window as it
is shown in Figure 1[10, 12].

2.4 Problem identification

While keeping in mind existing ECN system and the be-
havior of TCP variants we have identified two limitations.

Firstly all TCP flows in the network from the TCP end
nodes point of view are treated equally. It means that in
case of congestion all TCP flows are penalized by means of
receiving order to decrease the congestion window. Their
characteristics like their age or priority are not consid-
ered which means that even short TCP flows or flow with
higher priority are treated equally with old and greedy
flows.

Secondly there is only one command - to decrease the
size of the congestion window which is sent to all TCP
end nodes at the same time. We believe that additional
command will fill the gap between decreasing and increas-
ing congestion window and will help to improve the TCP
performance in general. Mechanisms and further concepts
introduced in the following chapters are aimed to solve
highlighted issues.

3. Advanced notification system model

The idea of our new approach ACNS (Advanced Conges-
tion Notification System) is to allow the TCP and the
networks itself to inform only specific TCP end nodes
about the congestion in the network and instruct them
to change the congestion window by means of decreas-
ing or increasing its size. Such functionality will provide
more bandwidth to younger and prioritized TCP flows by
freezing and possibly decreasing the congestion window
of older and greedy TCP flows (more details about short
and long age TCP flows like their avarege age, number
of packets exchanged, amount of data sent can be found
in [2, 21]). We propose a set of weights assigned to each
TCP flow for further calculations which will result into
a specific command that will be sent within particular
flows.

Weight of the TCP flow is based on the following three
parameters:

1. TCP flow age.
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2. TCP flow priority.
3. Queue length.

TCP flow age reflects to the time how long the TCP flow
has been observed in the network. TCP flow priority
stands for the priority carried in the header of network
layer protocol. As the congestion in the network is usu-
ally associated with the fulfilling queues therefore we have
chosen queue length as our last key parameter.

ACNS can work in two modes. First mode is a typical sit-
uation when the command is calculated by and received
from the nodes in the network. TCP end nodes receive
the packet, check the header for encoded command and
modify the congestion window according to the decoded
command. The mechanism of TCP flow weight calcula-
tion and command determination is described in the next
chapter 3.1. Second situation represents packet loss in the
network. From the TCP end node point of view it doesn’t
matter where the packet loss happened because the result
will be always the same - end node will not receive the
command from the network. Therefore the end node has
to determine which command needs to be used and this
will be done using the commands received in the recent
past (chapter 3.2).

3.1 Flow weight and command calculation

While the TCP communication passes nodes in the net-
work, it is necessary to calculate the weight of the TCP
flow in order to send commands back to the TCP end
nodes. As we mentioned earlier the calculation has 3 in-
put parameters - TCP flow age, TCP flow priority and
queue length.

TCP flow age is unique per flow and is changing in the
time. As the age is theoretically unlimited, this param-
eter would bring some indeterminism to the final weight
calculation. To solve this issue we have introduced age
normalization (1): age of the flow f; is represented as a
part of the oldest flow age fi.:. Using normalization age
values can vary from 0 to 1 (including). Result of flow
age normalization is shown in Figure 2.

ViemIF): T(f)= - (1
Similar normalization is used for the second parameter
priority p. Priority normalization is done within the func-
tion F(p) using maximal priority pmesz. The last input
parameter, actual queue length A(g), is changing in time
and is shared across all flows. It represents the actual
usage of the queue and can vary from 0 up to 1.

Final weight W for flow f; used for command determi-
nation can be calculated using (2) where F(p) stands for
priority part and T(f) represents age part. Both subparts
can be calculated using (3) and (4). It is possible to put
more weight on a specific part or eliminate the other part
by the weight factors (vp,v,) but the sum of these factors
must be equal to 1.

Calculated weight W needs to be transformed into com-
mand C which will be sent to the TCP end nodes. The
command can be 1, 2 or 3. As the calculated weight W
is a real number, we need to convert it to one of available
commands using comparison with 2 thresholds tha; and
thas.

(2)

Wi ]

Figure 2: Flow age normalization.

T (f) = va * age (f:) 3)
_ Up * Prmaa
F(p) = T (4)

3.2 Determining command upon packet loss
Commands received within acknowledgements can be use-
ful when loss occurs as they represent the situation in the
network right before the loss. Using these commands we
are able to determine trend command Cireng directly in
the TCP end nodes.

At first TCP end node calculates trend weight Wiyena us-
ing Weount Of the latest received commands. Even if we use
only few commands we have to distinguish between their
ages. This is achieved by assigning metric to every used
command using the exponential decrease with additional
step parameter [4, 13].

Calculated metric for every received command is normal-
ized using sum of metrics of all used commands X. Setting
P the array of all received commands the trend weight
Wirena for specific TCP flow can be calculated using (5).

Later on calculated trend weight Wienq needs to be trans-
formed into trend command Cireng which will be used
by end node itself. Calculation is similar to the calcu-
lation for standard command, the only difference is in
used thresholds thr; and thrs. These thresholds can be
set according to standard mathematical rounding or can
use custom values.

Wirend =

i=1

3.3 Commands overview

TCP end node can modify the size of congestion window
according to one of six commands. As we stated before
half of these commands can be received within acknowl-
edgements and half needs to be calculated. Commands
usage overview is shown in Figure 3.

Received commands (commands calculated by nodes in
the network):
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Figure 3: ACNS overview.

1. ¢ =1: 7normal”. There is no congestion in the net-
work. Congestion window can be modified following
the used TCP variant.

2. C = 2: "freeze”. There are signs of incoming con-
gestion. As this command will receive only specific
TCP end nodes, not all TCP flows are penalized.
After receiving, TCP end nodes freeze their conges-
tion window.

3. C = 3 : 7fallback”. There is a congestion in the
network. After receiving, congestion window will
not be decreased by multiplicative factor however it
will be decreased to the last known smaller value.

Calculated commands (commands calculated by TCP end
nodes):

1. Ciyenda = 1 : 7freeze”. Loss occurred without any
sign of congestion (probably communication channel
interference). Command of 2 is put in the list of
received commands P (different treatment during
another loss).

2. Cienda = 2 : 7fallback”. Loss occurred within indi-
cated incoming congestion. Congestion window will
be decreased to the last known smaller value. Com-
mand of 3 is put in the list of received commands
P.

3. Cirend = 3 : "decrease”. Loss occurred within ongo-
ing congestion. Congestion window will be reduced
following the used TCP variant. Command of 3 is
put in the list of received commands P.

3.4 Model verification

According to the testbed introduced in [21] together with
[19] we have performed basic model verification. The tests
were aimed at verifying basic functionality like commands
calculation and the impact of the feedback from nodes in
the network. Depicted figures with the simulation results
prove the functionality of ACNS feedback from nodes in
the network as well as the impact of the carried priority
on the whole prioritization process. ACNS system param-
eters were set according to Table 1. For testing purposes
we have randomly generated TCP flow lifetimes for an
average of 30 active TCP flows and sampled them over a
period of 50 consecutive evenly-spaced measurement pe-
riods.

Table 1: ACNS system parameters.

thLl thLZ Weount| O Up Va thAl thAQ

1,8413[ 2,1587| 10 3108 [02 09 |10

Mo, of TGP Flows

Femmr s m -

20

3
= parameter [1,2,3] 0 Sample

Figure 4: Randomly generated TCP flows without
active ACNS.

Mo. of TCP Flows

a
o

Sarnple
o parameter [1.2 3] ¥

Figure 5: Randomly generated TCP flows with
active ACNS.

Mo, of TCP Flows

o parameter [1,.2,3)

Figure 6: Randomly generated TCP flows with
active ACNS and priority of 0.
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In the example depicted in Figure 4 we have modeled
30 randomly generated TCP flows without feedback of
our congestion prevention ACNS system. As can be seen
around sample time 20 a congestion is occurring and the
network does not recover for a long period of time until
many flows are being dropped around time sample 40. In
the example depicted in Figure 5 we have modeled 30 ran-
domly generated TCP flows, with normal distributed pri-
orities. The commands are now being fed back to the end
nodes. The results show a slowly increasing tendency of
the C parameter as the queue fills up to the point where at
around sample number 30 the number of flows with C=3
rises dramatically. The command to decrease the con-
gestion window is fed back to our model and subsequent
samples show the effect.

In Figure 6 we used the same model and parameters, but
we changed the TCP flow priority distribution uniformly
to zero (DSCP zero is considered as best effort). The
scenario depicted in Figure 6 illustrates a different distri-
bution of the C parameter, as the queue fills up. With the
increasing number of TCP flows assigned C=2 (samples
1 to 25) the congestion is not avoided and the number of
flows assigned C=3 increases.

The gradual congestion window decrease afterwards pre-
vents congestion. In this situation all flows have a priority
of zero and only TCP flow age is considered. Thereafter
flows with lower priorities would be considered for conges-
tion window decrease much sooner than those with higher
priorities

4. Integration into protocol stack

In order to use system ACNS in real network it is neces-
sary to modify network layer (IPv4/IPv6) and transport
layer (TCP) protocols while keeping the existing header
structure of these protocols.

Our approach keeps full backward compatibility with ex-
isting IPv4/IPv6 and TCP, even with ECN system. Back-
ward compatibility means that the end nodes will agree
on using system which both of them support. New ACNS

commands will appear as ECN commands for non-compatible

nodes.

4.1 Network layer

From the network layer point of view ACNS supports mul-
tiprotocol environment. According to current standards
two version of IP protocol can be identified. The main
design part is focused on IPv4 due to its ongoing popu-
larity.

As the design is the same for IPv6, separate section for
IPv6 is included as well. The goal of this section is to
explain how can be one additional bit required for ACNS
functionality acquired in the IPv6 header.

4.1.1 IPv4

Integration in IPv4 header lies in reusing ECN bits with
one additional unused bit from field Flags called CMI
(Figure 7). Routers are willing to encode more impor-
tant commands into IPv4 header (Table 2 - NS stands for
nonce sum flag) and overwrite existing ones. TCP sender
uses messages 12/I3 within one data window. When send-
ing last packet from specific data window, sender uses
messages 14/15 in order to ask routers to encode com-

o 1 2 3
0123456780012 3456T7E001234567 89|01
vemion | ML | psce EC

Tota! Length
Identification Flogs | Fragment Offset
Tinte To Live | Pratocal Hender Checksum

Source [P Address

Destingtion IP Address

Figure 7: Bits used in IPv4 header.

Communica tion

-t
- — — — — — — — — =
t

ACHS usage t,

Figure 8: ACNS usage at network layer.

mand in the IPv4 header (saves routers system resources).
Messages 16 and I7 are created only by routers.

From the network layer point of view the whole communi-
cation is considered as one phase because it is not divided
into phases as TCP does. While keeping in mind network
layer, ACNS can be used during the whole communication
(Figure 8).

4.1.2 IPv6

According to RFC2460 IPv6 header does not contain any
Flags field. It means that we cannot assign CMI bit di-
rectly. In this case allocation of CMI bit will result in
using additional nested header in IPv6 header. The dis-
advantage of this solution lies in the size of the nested
header; in order to use one CMI bit another nested header
with size of at least eight bytes will have to be used [18].

Different approach introduced in [11] suggests decreasing
the size of the field Flow label from 20 bites to 17 bites.
Saved three bites can be reused as Flags field where the
CMI bit can be allocated directly as in IPv4 header with-
out any overhead. The disadvantage of this approach is
its low support across network devices.

4.2 Transport layer

Introduced approach can be used in combination with any
existing and future TCP variant. Detailed cooperation
with used TCP variant is explained in the following sec-
tions.

4.2.1 Change upon recipient of acknowledgement
End nodes can receive three different commands within
the acknowledgement. Together with these three com-
mands available congestion window (cwnd) changes are
defined in (6) where cwndies: is defined as W(t-1) and
cwndiast » is defined as W(t-z) Function W stands for con-
gestion window size changing function in time. After re-
ceiving command of 1, end node will be allowed to use
its own TCP implementation to calculate new congestion
window.
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Table 2: ACNS messages encoded in IPv4 header.

# | ECN | CMI Message
Im|yo|o 0 ACNS not supported
12|10 0 ACNS in ECN mode (set by end node), ACNS message: command normal (left by routers), NS = 0
13|01 0 ACNS in ECN mode (set by end node), ACNS message: command normal (left by routers), NS = 1
Ia | 1] 0 1 ACNS supported (set by end node), ACNS message: routers to set command, NS=0
I5 | 0| 1 1 ACNS supported (set by end node), ACNS message: routers to set command, NS=1
I6 | 1 | 1 1 ACNS message: command freeze (set by routers)
I7 |11 0 ACNS message: command fallback (set by routers)
0 [1 [z [3
01234567 890123456769012345678 901
Source port | De:stination port | Comnunication |
ﬂﬂmnecﬁon Dat " Connection
_— establishment, GEXCRARGE | vermination
offeet Windowsze | el e —— i o el e —
Checkzum Urgent pointar I
It Conforming 1 ACHS usage i t,
Figure 9: Bits used in TCP header. t ACHNS 2 2
Figure 10: ACNS usage at transport layer.
cwndrcp C =1
cwnd = _ (6) Mode B
cwndiast ¢ =2 Connection
cwndy e . C = 3 establishment

[ACHS-setup 5YM]
4.2.2  Change upon loss SYME1, ACK=0, ECE=1, CWR=1, CMT=1
Using self-calculated trend commands end nodes are able
to modify congestion window as defined in (7). After [ACHS-setup SYM-ACK ]

receiving command of 3 end node will decrease the con- M=l ACKSOL ECE=] CWRSD. CRAT=1
gestion window according to used TCP variant.

¥ Received

Syn_Rovd |

SYN=0, ACK=1, Seqhl=x+1 Acki=Y+1

cwndiast Cirena = 1 Data exchange
cwnd = d C _ 9 (7)
CUNGlastx trend = Figure 11: Conforming ACNS during connection
establishment.
C’LU’I’LdTCP Ct'rend =3
423 TCP
Integration in TCP header lies in reusing existing ECN Commection establishin et
bits and new bit from the reserved field called CMT (Fig- Node A Mode B
. SYM=, ACK=,

ure 9). These bits allow us to encode and decode all neces- SeqN=r+L AckN=1+1 -
sary ACNS messages (Table 3 - NS stands for nonce sum ’ S [
flag). From the transport layer point of view the whole - T — — — T —_

communication is divided into 3 phases - connection es- Data exchange
tablishment, data exchange and connection termination

(Figure 10). Usage of ACNS system will be agreed dur-
ing the connection establishment (three-way handshake).

TCP sender will offer ACNS system within ACNS-setup [ onnection termination
SYN packet (flags SYN=1, ACK=0, ECE=1, CWR=1, LN, ACK-L, Seqtx, Ac KI=Y

CMT=1). If TCP receiver supports ACNS, it will re- T

ply with ACNS-setup SYN-ACK packet (flags SYN=1, W
ACK=0, ECE=1, CWR=0, CMT=1) (Figure 11). -

TCP end nodes agree on using ACNS during data ex-
change however they will not use ACNS during the initial
phase because ACNS does not apply to control packets.

While using ACNS during data exchange, TCP end nodes
set appropriate bits in IPv4 and TCP header according to

Figure 12: Conforming ACNS during data ex-
change.
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Table 3: ACNS messages encoded in TCP header.

# | CWR | ECE | CMT Message

T1 0 0 0 command normal (R), NS=0

T2 0 0 0 command normal (R), NS=1

T3 1 0 0 congestion window reduced (S), NS=0

T4 1 0 0 congestion window reduced (S), NS=1

T5 0 1 1 command freeze (R)

T6 0 1 0 command fallback (R)

#«———— Communication —» = FR{MFRl————™>
gf
Bottlens ck Battlenack NO Duplex link Duplex link
ISP J 4 Mbps, 3 Mbps,
20 ms, RED 100 ms, RED
Figure 13: High level simulation topology g
overview. N1
the used message. ACNS is: used du.ring. the whole data I:I1;Eﬁ(t::jllk5 1D|;!|J|]|p Iﬁ:j:;;k aggﬁt:;nsks \g
exc.:hange until the connection termination phase starts | 10ms, RED 10 ms, RED 10 ms. RED .
(Figure 12).
N2 «—CBR(UDP} ——— M5

TCP receiver decodes command from IPv4 header and en-
codes the command in the TCP acknowledgement header
sent to the TCP sender. TCP receiver can use messages
T1/T2 in order to signalize normal congestion window
processing. In case of upcoming congestion, TCP receiver
can inform TCP sender with message T5 in order to freeze
congestion window or with message T6 to apply command
fallback. All messages from Table 2 are used only by TCP
end nodes.

From the nodes in the network point of view ACNS resides
in the TCP end nodes and in the routers as well.

To sum it up, TCP end nodes use ACNS for:

e Messages encoding,

Messages decoding,

Modifying TCP congestion window,

e Command self-calculation upon packet loss.

Nodes in the network (routers) use ACNS for:

e TCP flows classification,

e Messages encoding,

Messages decoding,

e Commands calculation.

5. ACNS evaluation

System ACNS was implemented in the network simulator
ns-2 where the simulations were performed as well. One
of the most important implementation parts was the im-
plementation of flow classification as this part required its
own data structure for storing all necessary flow details:
Hash, Source IP address, Destination IP address, Source

Figure 14: Detailed simulation topology.

Table 4: TCP flows parameters.
Flow | TCP | Prio. | Start | End | From | To

#1 CUBIC 0 0.1 118 NO N5

#2 CUBIC 26 15.1 118 NO N4

#3 | CUBIC 46 30.1 118 N1 N3

port, Destination port, Time of flow add, Time of last
flow update, Age, Priority and ACNS compatibility.

Simulation topology used for simulations represents con-
nections between 2 remote sites which are connected via
Internet Service Provider (ISP). We assume that the bot-
tlenecks do not exist in the ISP network (over provisioned
links) however the ’last-mile’ links (used for connection to
the ISP network) are willing to become bottlenecks during
the communications.

High level overview of the simulation topology is shown
in Figure 13. Detailed simulation topology is shown in
Figure 14. The simulation consisted of 3 concurrent TCP
flows and 3 concurrent UDP flows (detailed characteristic
in Table 4 and Table 5). All TCP and UDP flows ended at
simulation time of 118 seconds when the whole simulation
ended. All UDP flows had priority set to 0 (best-effort).

ACNS system parameters were set according to Table
1. Network parameters which were monitored during the

Table 5: UDP flows parameters.

Flow | Rate | Prio. | Start | End | From | To
#1 0.5 0 0.1 118 NO N3
#2 0.6 0 20.1 118 N1 N4
#3 0.5 0 40.1 118 N2 N5
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Table 6: Simulation results - throughput

# | System Throughput [Mb/s]
Average Maximal
1| #2 | #3 | #1 | #2 | #3
1 - 081104 (02| 27| 21|18
2 ACNS | 0.3 | 0.7 1 3 3 3

Table 7: Simulation results - RTT.
# | System RTT [s]

Average Maximal
H1 | #2 | #3 | #1 | #2 | #3
- 377 | 377 | 316 | 973 | 1230 | 335
ACNS 327 | 329 | 332 | 468 | 484 | 406

simulations are throughput (maximal, average), RTT
(maximal, average), amount of sent data and packet loss.

Comparison of achieved simulation results is shown in the
following tables:

Table 6 - average and maximal throughput,

Table 7 - average and maximal RTT,

Table 8 - amount of sent data,

Table 9 - packet loss.

For better illustration the comparison of actual through-
put and RTT changing in time is shown in the following
figures. Figure 15 shows the changing actual throughput
of all 3 TCP flows without ACNS system. Significant
throughput changes at around 15th and 30th second are
related to the start of new TCP flows.

The same reason is responsible for significant through-
put changes at around the 20th and 40th second where
the next UDP flows started. Figure 16 shows the actual
throughput of all 3 TCP flows with ACNS system active.
Throughput changes around 15th, 20th, 30th and 40th
second are related to the start of the new TCP and UDP
flows.

Figure 17 shows how the actual RTT of all 3 TCP flows
was changing during the simulation without ACNS sys-
tem. Using this picture we can conclude that RTT was
changing due to the actual queue length. On the other
hand Figure 18 shows the change of RT'T while the ACNS
system was in use. Once the ACNS was stabilized, the
RTT decreased significantly and for the rest of the sim-
ulation RTT achieved lower values in comparison with
simulation where ACNS system was not used.

According to the simulations results, using ACNS it is
possible to increase TCP flows throughput (Figure 15 -
without ACNS, Figure 16 - with ACNS) by 44 % which

Table 8: Simulation results - sent data.
# | System | Amount of sent data [MB]

#1 #2 #3 | Total
- 11.78 | 6.15 2.89 20.82
2 ACNS 4.4 11.26 | 14.33 | 29.99

Table 9: Simulation results - packet loss.

# | System Loss [packets]

#1 | #2 | #3 | Total
1 - 110 86 40 236
2 ACNS 0 2 0 2

Table 10: Network performance improvements.

Network parameter Improvement
Total average throughput + 44,5 %
Total average RTT -71,1%
Total data sent + 44,0 %

lead to increased amount of sent data (44 % increase).
Using our new approach TCP flows RTT can be decreased
(Figure 17 - without ACNS, Figure 17 - with ACNS) by 7
%. Network performance improvements are summarized
in Table 11. All these improvements were achieved with
nearly none losses.

6. Conclusions

In this paper we have introduced an advanced notification
system for TCP congestion control called ACNS. In com-
parison with existing approaches, our approach ACNS can
be used in combination with any existing of future TCP
variant. One can compare this approach with existing
ECN system however ECN system does not distinguish
between TCP flows and between certain phases of con-
gestion. Our approach enables prioritization of TCP flows
using their age and carried priority. As a result, only spe-
cific TCP flows are penalized and not in the same way.

The goal of ACNS is to avoid congestion by means of pro-
viding more bandwidth to new flows while penalizing old
flows and later on if congestion occurs it uses TCP vari-
ant mechanism to eliminate the congestion. Using ACNS
significant improvement of network throughput can be
achieved. Depending on the TCP flows prioritization it
is possible to achieve up to 44 % increase of throughput
and the amount of transferred data and around 7 % RTT
decrease with nearly none losses. To sum it up, ACNS
allows TCP performance increase without the need to in-
crease capacity of the communication links. In the future,
we would like to focus on the cooperation with IPv6 and
further testing in wireless environment.
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