
Searching and indexing in temporal databases

Michal Kvet
∗

Department of Informatics
Faculty of Management Science and Informatics

University of Žilina
Univerzitná 8215/1, 010 26 Žilina, Slovakia

michal.kvet@fri.uniza.sk

Abstract
This paper deals with the design and administration of
complex temporal system based on attribute granularity.
In the past, historical data were provided using backups
and logs. Later, object level temporal system has been
developed, which can produce many duplicate values if
the change frequency and granularity is not the same for
all object attributes. Proposed column level temporal ar-
chitecture does not decrease the performance, if the at-
tribute granularity differs. An important aspect of the
temporal system is based on states selecting and changes
of the states over the time monitoring. Several index
structures have been defined, the performance of them
based on access methods have been experimentally veri-
fied. Moreover, temporal concept of Select statement with
new subelements has been defined. It was also necessary
to define transaction management for conflict states res-
olution - each object can be defined by no more than one
state at any timepoint. We have implemented access rules
as well as hierarchy of priorities designed to address time
collisions. In conclusion, we describe temporal manage-
ment response to the change of data types, characteristics
or data model extension. Classification rules for temporal
models and access methods have been proposed.

Categories and Subject Descriptors
H.2 [Database Manager]

Keywords
Temporal system, column level approach,
index structures, access methods,
Select statement, transactions, database integrity

1. Introduction

∗Recommended by thesis supervisor: Prof. Ing. Karol
Matiaško, PhD.
Defended at Faculty of Management Science and Infor-
matics, University of Žilina, August 2015.

c© Copyright 2011. All rights reserved. Permission to make digital
or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies show this notice on
the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy other-
wise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from STU Press,
Vazovova 5, 811 07 Bratislava, Slovakia.

Massive development of data processing has brought the
need for large data access, which must ensure that all
information are provided at the right time. Database sys-
tems are the core of almost every information systems and
are one of the most important parts of the information
technology. They are used not only in standard applica-
tions, but can be found also in critical applications like
transport systems, industrial control systems, health care
systems or technological process monitoring systems [1].
Most of the processed data represent current states of the
objects. However, these states evolve and change their
status over the time. Once the properties are changed,
corresponding attributes are updated and the database
still contains only actual valid data. In the past, histori-
cal data were provided using log files and backups. These
structures stored also non-temporal data in the unsuitable
form, which often resulted in operation loss. Later, the
Flashback functionality has been proposed, which allows
obtaining historical data table image. Monitoring and
managing process of the changes and evolution over the
time was very complicated and time consuming using that
method. Moreover, paradigm of temporal management is
based on the whole time spectrum, thus it should be pos-
sible to manage also future valid data. Using backups and
log files, it was absolutely impossible to meet this require-
ment. Temporal system must also be able to cope with
the requirement to change the data model, data types of
the attributes or conversion from conventional attribute
to temporal or vice versa. Temporal column is defined by
the need to track individual changes (updates) over the
time, whereas conventional attributes store only actual
valid data.
Object level temporal approaches extend the paradigm of
conventional databases by adding validity spectrum to the
definition. Uni-temporal system uses validity, bi-temporal
concepts are based also on transaction validity. In gen-
eral, we can deal with the multi-temporal systems pro-
cessing multiple time spectra and zones. Overall costs,
time processing requirements, system response are the
critical factors. As shown in the chapter 4, this solution
does not cover all the problems of the processing and data
management, therefore new model has been proposed al-
lowing complex data attributes management. This paper
can be divided into three parts. The first deals with the
existing solutions, the second one describes developed ar-
chitecture, which is performance evaluated in the third
part.

2. Temporal system requirements
Temporal system requirements defined in [2] are designed
for easy data object manipulation by the users. In our



2 Kvet, M.: Searching and indexing in temporal databases

opinion, these criteria do not cover the temporal com-
plexity. Based on the results of the analysis, temporal
aspects has been extended by us (aspect 3 and 4). Gen-
erally, requirements can be divided into these four groups
[3, 4, 5]:

1. Aspect of usability is based on the easy manageable
methods. The aim is to provide easy access to the
latest results, as well as the results at any time in the
past. Moreover, it should be possible to get changes
based on the historical data and make projections
for the future.

2. Aspect of performance is based on the correctness
of the results. Time management and results should
be the same in performance rate and form when
accessing actual or historical data.

3. Aspect of data structure is a special requirement for
storage optimization based on the relevance defini-
tion. Only values in the monitored area are neces-
sary to be stored. If the attribute does not change
its value or the change is not significant, there is no
reason for storing and processing new value. Sys-
tem focuses therefore only on the objects of inter-
est, positions, where the changed segment can be
located. Therefore, the Epsilon (ε) value can be de-
fined, which expresses the minimal change of values
in the defined area, which should be stored. If the
value ε = 0, all the measured data are stored in the
database. The principle is based on threshold.

4. Transaction management is based on transaction
processing and definition. In the case of sensor data
processing, this aspect can be replaced with the er-
ror detection and measurement corrections, if nec-
essary.

Based on the requirements, several aims have been de-
fined - design, implementation and semantics definition
of the attribute temporal approach with the emphasis on
undefined states and future events handling, design and
implementation of the temporal integrity constraints and
index definition and tablespace location management.

3. Object level uni-temporal system
The easiest and also often used method to manage tempo-
ral data is uni-temporal system. It is based on the exten-
sion of the conventional (non-timed) model. The primary
key now contains not only the object identifier, but also
one or two attributes determining the validity of the row.
Consequently, one object can be defined by the various
numbers of the rows, but not more than one defines the
object at any time point. Thus, the data modelling op-
erations must define not only the object itself, but also
the timepoint expressing the begin timestamp (or other
timed attribute based on the granularity like day, month
and so on) or two attributes expressing the time interval.
In our case, the row is defined by the validity. The figure
1 shows the structure of the uni-temporal system based
on the validity interval.

Time interval can be represented by four ways - open-
open, open-closed representation - which are used very
rarely because of the problem of specifying validity be-
ginning directly. Another two types are closed-closed and
closed-open representation. The advantage of closed-open

Figure 1: Conventional and uni-temporal struc-
ture [2]

representation is based on granularity change, which does
not generate undefined states (gap). If the validity is not
right side bordered, Null value is not used because of the
primary key definition. Moreover, using this clause, it is
not possible to determine whether an event has occurred
or not. Istead of Null, MaxV alueT ime notation is used
[4].
However, the validity can be modelled by a single at-
tribute that expresses begin date. The next state delimits
the validity of the previous state of the particular object.
Our developed approach uses this principle. Moreover, it
is necessary to create definition for invalid states [5].

4. Column level temporal model
The solution described in the previous section manages
the attributes of the objects, whereas the standard uni-
temporal model works with the whole objects. Column
level temporal system is based on object attribute as the
main part of the granularity. Thus, it is not problem, if
the attribute granularity of the changes is not the same.
Moreover, this system can manage objects with conven-
tional attributes. The principles and described structure
can be found in [3, 5].

5. Extended column level
Extended column level temporal system can be considered
as the improvement of the column level temporal system
in the terms of the performance and the simplicity of the
model management for the users. It is extended by the
definition of the type of the operation. If the operation is
update, there is also the reference to the data type tables
with historical values.
Existing applications are connected to the conventional
layer with actual values, thus program can continue to
operate without any changes. The main part is to man-
age the table containing information about the changes
of temporal columns. Column, which changes need to
be monitored, is temporal. If the value is changed, in-
formation about the update is stored in the developed
temporal table and historical value is inserted into to the
table containing historical values. The figure 2 shows the
complete structural model. Application is directly con-
nected to the main tables with current valid values. It
means that currently used applications can be used with-
out any change. Historical values are stored in the special
section, each temporal data type has one table defined by
the identifier (primary key) got using the sequence and
trigger and the values themselves. Thus, the principle
and system is similar to the column level temporal system,
but historical values management and temporal table is
different.

Management of the temporal table is completely different.
It consists of these attributes (fig. 3):



Information Sciences and Technologies Bulletin of the ACM Slovakia 3

Figure 2: Extended column level temporal system
structure

• ID change - got using sequence and trigger - pri-
mary key of the table.

• ID previous change - references the last change of
an object identified by ID. This attribute can also
have NULL value that means, the data have not
been updated yet, so the data were inserted for the
first time in past and are still actual.

• ID tab - references the table, record of which has
been processed by DML statement (INSERT ,
DELETE, UPDATE, RESTORE).

• ID orig - carries the information about the identi-
fier of the row that has been changed.

• ID column - holds the information about the changed
attribute (each temporal attribute has defined value
for the referencing).

• Data type - defines the data type of the changed
attribute:

– C = char/varchar

– N = numericvalues(real, integer, . . . )

– D = date

– T = timestamp

This model can be also extended by the definition
of the other data types like binary objects.

• ID row - references to the old value of attribute (if
the DML statement was UPDATE). Only update
statement of temporal column sets notNULL value.

• Operation - determines the provided operation:

– I = insert

– D = delete

– U = update

– R = restore

The principles and usage of proposed operations are
defined in the part of this paper.

• BD - the begin date of the new state validity of an
object.

Figure 3: Extended temporal table

The principles of data operation modelling and manage-
ment are described in [6].
One of the temporal property is the definition of the
volatility. Often, it is not necessary (and even useful) to
store states during indefinite time period. Therefore, pro-
posed solution contains algorithms and methodology for
database reconstruction after too historical data removal
to aim the requirement of consistency. The method pa-
rameter can be defined by the timepoint or by number of
following changes [7, 8].
The object state in real time can be defined by no more
than one valid state. However, it may cause collisions dur-
ing the new conditions definition, therefore, we expanded
transaction manager by the access rules (restricted, partial,
complete, and warning) and the definition of transaction
priority. If the system of the priority is used, transaction
with higher value can directly influence the transaction
with lower value of the priority. Access rules delimits the
planned events.
The basic unit of a database system is a transaction which
is in conventional approach characterized by four basic
properties - atomicity, persistence, consistency and isola-
tion. The existing definition of transactional consistency
has been extended by the temporal entity integrity and
referential integrity strict rule. This rule requires that
the referenced object must completely cover the validity
of the particular table row.
Object properties may be additionally defined by the time
records in several tables. Therefore, we have created a
methodology managing hierarchically modelled objects in
the system (definition of temporal ISA hierarchy). We
have also defined approaches and techniques allowing and
managing changes of a data model in time.

6. Temporal Select definition
The Select statement in relational database approach is
considered as the most important and most frequently
used SQL statement based on performance. With this
statement, we get desired data from the database using
relational tables. The basic syntax of the Select state-
ment in conventional database consists of these six parts
- Select, From, Where, Group by, Having and Order
by.
Although conditions can be defined in the Where clause,
this segment does not cover the complexity and structure
of the temporal system. Therefore, the following section
describes ways to enhance the whole concept of manage-
ment of temporal data.
Designed and implemented syntax shows the temporal ex-
tension of the Select statement using these parts:

• EVENT DEFINITION,

• EPSILON DEFINITION,



4 Kvet, M.: Searching and indexing in temporal databases

• MONITORED COLUMN LIST,

• TYPE OF GRANULARITY.

6.1 Event definition

Clause Event definition extends the Where clause of
the Select statement and specifies processed time range
by a point in time (defined timepoint) or by time in-
terval modelled by the closed-closed or closed-open repre-
sentation (all defined types can be transformed to another
types [2]) - fig. 4.

Figure 4: Event definition

6.2 Epsilon definition

For the purposes of changes and progress monitoring over
the time, it is convenient to define rules that affect the size
of the output processed sets. Epsilon definition is the
determination of the method by which it is possible to fil-
ter out irrelevant changes, especially in sensor data. Each
referenced temporal attribute may have been defined by
the precision - relevance - minimal value of the significant
change - Epsilon (ε) value. If the difference between two
consecutive values of the attribute is less than the value
of the Epsilon (ε) parameter defined for the correspond-
ing temporal column, this change will not appear in the
result set returned by the Select statement. If this clause
is not used, then the default value of the minimum change
(ε = 0) is used. Thus, any change will be processed re-
gardless the relevance.

6.3 Monitored column list

The clause Monitored column list as the extension of
the Select for temporal approach allows list of columns
definition, which are relevant for processing and should
be monitored. This list does not need to be identical to
the first part of the Select statement, however, it can
consists only of the temporal attributes (not conventional
or functions).

6.4 Type of granularity

The clause Type of granularity defines the format of the
output set - all attributes, new attribute values or actual
and previous state definition. As it has been already men-
tioned, the core of the system consists of the temporal
analysis of changing characteristics.

7. Index structures
One of the main features of optimization is based on
index structures. Temporal databases are oriented for
state management and monitoring over the time. Get-
ting states and individual changes in the Select state-
ment form the core of the major milestone of efficiency
and speed of the system.
Oracle defines an index as an optional structure associated
with a table or table cluster that can sometimes speed
data access. By creating an index on one or more columns
of a table, you gain the ability in some cases to retrieve
a small set of randomly distributed rows from the table.
Indexes are one of many means of reducing disk I/O. If
a heap-organized table has no indexes, then the database
must perform a full table scan to find a value.

7.1 Index sequence file

Index sequence data alignment is based on two data sets
- the sequential file and the index file, consisting of a key
and a pointer to the data row in a sequential file. Find-
ing the record is based on the index scan and access to
primary (sequential) file. If the file was too large, it is
possible to add another index layer - hierarchical index.
The main disadvantage of index-sequential arrangement is
the significant performance decrease in performance (pro-
cessing time requirements and the response to it) based on
amount of data increase. This problem can be partially
solved by the data index reorganization.

7.2 B-tree, B+tree

The index structure of the B+tree is mostly used be-
cause it maintains the efficiency despite frequent changes
of records (Insert, Delete, Update). B+tree index con-
sists of a balanced tree in which each path from the root
to the leaf has the same length.
In this structure, we distinguish three types of nodes -
root, internal node and leaf node. Root and internal node
contains pointers Si and values Ki, the pointer Si refers
to nodes with lower values the corresponding value (Ki),
pointer Si+1 references higher (or equal) values. Leaf
nodes are directly connected to the file data (using point-
ers).
B+tree extends the concept of B-tree by chaining nodes
at leaf level, which allows faster data sorting. DBS Ora-
cle uses the model of two-way linked list, which makes it
possible to sort ascending and descending, too (fig. 5).

Figure 5: B+tree

Limitation of this approach is a small number of records
(low cardinality). In that case, using index does not pro-
duce the desired effect in terms of performance (acceler-
ation). Another disadvantage is the lack of support SQL
queries with functions implicitly.

7.3 Inverted key B-tree

Index B-tree structure with inverted key is used in case
of often requirement for tree balancing (column value is
obtained using the sequence and the trigger - autoincre-
ment) caused by frequent execution of the Insert state-
ment. Indexing will not use original key value, but the
inverted variant. For example, for the key 123 is inverted
key value 321.

7.4 Bitmap index

Bitmap indexes are represented by two-dimensional array,
the number of rows is identical to the cardinality of the
table. The first column contains a reference to a record
in the data file, the other columns are called bitmap and
represent different values of the indexed column.



Information Sciences and Technologies Bulletin of the ACM Slovakia 5

The following figure illustrates the general assessment of
conditions of the order using bitmap indexes. Let have a
table - cars with primary key represented by the registra-
tion number (license plate). Non-key attributes include
color (color), producer (producer), construction year (year)
and price (price). The aim is to find red cars produced
by the ”̌Skoda” brand in 2012. The solution is shown in
fig. 6.

Figure 6: Bitmap

7.5 Table index

If the table is too small, it is better to keep complete
records directly instead of references (pointers) to the leaf
level data. This approach reduces the number of Read
operations and thus accelerates the evaluation of the re-
quest. Oracle (version 8 and later) allows you to create a
special type of table (index−onlytable), where the entire
table is stored in the index structure (B+tree).

7.6 Cluster index

Cluster index provides the physical layout and location
of the data set by attributes constituting the index. Ac-
cordingly, each table can have no more than one index of
such type.

7.7 Table cluster

Cluster tables is linked to several tables, records with the
same key value (clusterkey) are stored together - these
data are usually required together. It means, that the
clustered data can be loaded using one Read operation.
In temporal system, historical and future valid data are
clustered together with actual data to provide complete
monitoring. Cluster key is the identifier of the data ex-
tended by the definition of the table, if the primary key
identifier does not provide it automatically.

8. Tablespace localization
Performance characteristics are influenced by the index
location and by the type of the index structure. In the
previous section, several index types has been described.
However, second criterion is based on data division into
separate tablespaces, which are located directly with the
data themselves or in the separate discs, which allows
more flexible response to the extension of the number of
data blocks and index construction changes. The last type
of the processed type is based on index localization in the
remote storage (server) and access using the network. The
aim is to monitor the network traffic and response of the
system in case of network failures and routing. In this
case, if using 1Gb network speed, the slowdown of the
system varies usually from 5% to 10%.

9. Summary
Temporal data processing and complex management is
one of the most important factor of the current database

systems. Conventional database approach is not suitable
for progress monitoring over the time. Data processing
requires access to the whole information about the evolu-
tion of the states during the life-cycle. Effective managing
temporal data is the core of the development and can be
used for decision making, analyses, process optimization,
which is very significant factor in industrial environment.
During the analysis, we found out, that there is currently
no complex temporal system classification, therefore we
proposed, presented and discussed classification criteria
consisting four-layer architecture - the type of database
system, the type of temporal structure, type of transac-
tion processing and the type of index.
Temporal data searching and monitoring is the fundamen-
tal part of the processing using Select statement. Current
conventional implementation does not cover temporal ar-
chitecture, therefore we expanded the definition with the
several clauses - processed period and granularity, moni-
tored temporal attributes and epsilon definition.
Temporal characteristics are based on object level, which
can in many cases generate duplicates, therefore column
level model has been defined, implemented and tested
with emphasis on transaction management.
Temporal data are usually extensive, thus it is neces-
sary to manage them effectively in terms of memory re-
quirements and overall management and response of the
system. Over the following proposed attribute oriented
model, we created different variants of index structures,
which make it possible to get desired results much faster.
The final part of the experimental work is the comparison
of the proposed indexes with regards on their location, ac-
cess methods, and defined rules.
In the future, we would like to focus on temporal table
clustering and index division to the network nodes based
on multiple characteristics.

Acknowledgements. This publication is the result of
the project implementation:
Centre of excellence for systems and services of intelligent
transport, ITMS 26220120028 supported by the Research
& Development Operational Programme funded by the
ERDF,
Centre of excellence for systems and services of intelli-
gent transport II, ITMS 26220120050 supported by the
Research & Development Operational Programme funded
by the ERDF,
Center of translational medicine, ITMS 26220220021 sup-
ported by the Research & Development Operational Pro-
gramme funded by the ERDF.
Podporujeme výskumné aktivity na Slovensku - projekt
je spolufinancovaný zo zdrojov EÚ.”

References
[1] Date, C.: Date on Database, Apress, 2006.

[2] Johnston, T. et al.: Managing Time in Relational
Databases, Morgan Kaufmann, 2010.

[3] Kvet, M., Matiaško, K.: Epsilon temporal data in
MRI results processing, In Proceedings of the 10th
international conference - Digital Technologies, 9.6. -
11.6.2014, Žilina, 2014.

[4] Kvet, M., Matiaško, K.: Transaction management in
temporal system, In Sistemas y Technoloǵıas de
Información: actas de la 9a conferencia Ibérica de



6 Kvet, M.: Searching and indexing in temporal databases

Sistemas y Technoloǵıas de Información, 18.6. -
21.6.2014, Barcelona, 2014.

[5] Kvet, M., Matiaško, K.: Column level uni-temporal
data, In Communications: scientific letters of the
University of Žilina, Volume 16, Issue 1, 2014.

[6] Kvet, M., Vajsová, M.: Extended column level
temporal system indexing, In UKSim-AMSS 8th
European modelling symposium on computer
modelling and simulation, 21.10. - 23.10.2014, Pisa,
2014.

[7] Maté, J.: Transformation of Relational Databases to
Transaction-Time Temporal Databases, In
Engineering of Computer Based Systems
(ECBS-EERC), 2011 2nd Eastern European
Regional Conference, 2011.

[8] Snodgrass, R. et al.: Adding Transaction Time to
SQL/Temporal, 1996.

Selected Papers by the Author
M. Kvet. Temporal data approach performance In New developments

in Circuits, systems, signal processing, communications and
computers: proceedings of the international conference Circuits,
systems, signal processing, communications and computers
(CSSCC 2015): Vienna, Austria, March 15-17, 2015. pp. 75-83

M. Kvet, M. Vajsová. Extended column level temporal system
indexing In EMS 2014, 21-23 October 2014, Pisa, Italy, 2014.
pp. 5-10

M. Kvet, K. Matiaško. Transaction management in temporal system
In Sistemas y Technologías de Información: actas de la 9a
conferencia Ibérica de Sistemas y Technologías de Información,
18.6. - 21.6.2014, Barcelona, 2014

M. Kvet, K. Matiaško, M. Kvet. Transaction management in fully
temporal system In UKSim-AMSS 16th international conference
on computer modelling and simulation, 26-28 March 2014
Cambridge, United Kingdom, 2014. pp. 147-152

M. Kvet, K. Matiaško. Uni-temporal modelling extension at the object
vs. attribute level In EMS 2013, Manchester, United Kingdom -
20-22 November 2013. pp. 6-11

M. Kvet, A. Lieskovský, K. Matiaško. Temporal data modelling:
conventional and temporal table In ICCSE 2013, April 26-28
2013, Colombo, Sri Lanka, 2013. pp. 452-459


