
Acceleration of Object Detection using Classifiers

Roman Juránek
∗

Department of Computer Graphics and Multimedia
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, 612 00 Brno, Czech Republic

ijuranek@fit.vutbr.cz

Abstract
Detection of objects in computer vision is a complex task.
One of the most popular and well explored approaches is
the use of statistical classifiers and scanning windows. In
this approach, classifiers learned by AdaBoost algorithm
are often used as they achieve low error rates and high de-
tection rates. To achieve high performance, acceleration
techniques are used, such as use of GPU, SIMD, custom
hardware etc. The contribution of this thesis is introduc-
tion of a technique which enhance object detection per-
formance with respect to an user defined cost function.
The presented method balances computations of previ-
ously learned classifier between two or more run-time im-
plementations in order to minimize the cost function. The
optimization method is verified on a basic example – di-
vision of classifier to a pre-processing unit implemented
in FPGA, and a post-processing unit in a standard PC.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-
neous; D.2.8 [Software Engineering]: Metrics—com-
plexity measures, performance measures

Keywords
Object Detection, AdaBoost, WaldBoost, Acceleration,
SIMD, Cost Minimization

1. Introduction
Many real life applications could use information about
objects captured by a camera. In user interfaces, for ex-
ample, a camera can be used as an alternative input de-
vice. The computer can capture the scene in front of the
computer and analyze it in order to find user’s face and
Analise the user’s gestures. Such input can be used to con-
trol the computer without the keyboard or mouse. Other
applications, like traffic control or surveillance systems,

∗Recommended by thesis supervisor: Doc. Dr. Ing. Pavel
Zemč́ık Defended at Faculty of Information Technology,
Brno University of Technology, Brno.

c© Copyright 2011. All rights reserved. Permission to make digital
or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies show this notice on
the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy other-
wise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from STU Press,
Vazovova 5, 811 07 Bratislava, Slovakia.

use detection of objects to automatically count people,
check license plates or record traffic violations. Object
detection is important part of such systems.

Very popular approach to object detection is exploita-
tion of statistical classifiers and scanning windows tech-
nique. The classifier is learned by a machine learning al-
gorithm, typically supervised or semi-supervised. Among
the large number of statistical machine learning meth-
ods, most prominent in real-time object detection is the
Adaptive Boosting algorithm and its modifications. This
method became so popular (due to its simplicity and per-
formance) that it found its way to commercial systems
that use object detection.

The focus in this paper is on implementational acceler-
ation of the detection process. The contribution is the
introduction of the technique for composition of different
implementations of object detection in order to enhance
its performance with respect to an user defined cost func-
tion. The composition balances computations between
two or more implementations in order to minimize the
cost function. The method is based on the analysis of
previously learned classifier and knowledge of properties
of the implementations which executes the detection. The
method is verified on the example where a classifier is di-
vided to the two evaluation phases, first executed in a
hypothetical hardware unit and the second executed in
software using implementation with different properties.
The classifiers in the thesis are learned by the WaldBoost
[23] algorithm and they are frontal face detectors. Image
features used are LBP (Local Binary Patterns) [30] and
LRF (Local Rank Functions) [11]. This combination of
learning algorithm and image features can be considered
as a state of the art in real-time object detection with
scanning-window classifiers.

The rest of this paper is structured as follows. Section 2
briefly summarizes detection of objects using WaldBoost
classifiers and methods for acceleration of the detection.
Section 3 introduces the contribution of the thesis – eval-
uation of classification cost and its minimization using
different implementations of the detection. The experi-
mental results are presented in Section 4 along with the
discussion and the paper is concluded in Section 5.

2. Object Detection using Classifiers
2.1 The Detection
The basic part of object detection with classifiers is the
classifier which is learned by a machine learning algorithm
[13, 5, 25, 23, 1]. The classifier can decide if the input

2 Juránek R.: Acceleration of Object Detection using Classifiers

sample image is or is not an object of interest. Object de-
tection with classifiers is achieved by analysis of each sub-
window of input image by the classifier. The sub-windows
are taken from all positions and scales (and possibly other
transformation, depending on the particular application).
The number of analyzed samples is very high, reaching
hundreds of thousands per image and thus the resulting
classifier should have very low false alarm rate. On the
other hand, each object appears in multiple neighboring
sub-windows and thus false negative rate does not neces-
sarily need to be zero and some detections can be, in fact,
missed. It is only required that at least one of these pos-
itive sub-windows are hit by the classifier. The detection
with sliding windows is exploited in many works. In the
[19] they use over-complete set of Haar-like features and
SVM classifier as basis for general object detection frame-
work. Similar approach was used in [25] where they use
AdaBoost. In [4] authors use histograms of oriented gra-
dients as an input to SVM classifier to detect pedestrians.
In [24] the authors propose emulator of key point detec-
tors using sliding window detector based on WaldBoost
algorithm.

The WaldBoost algorithm [23] uses Real AdaBoost [22]
to select and order weak classifiers h(x) (simple decision
functions at least slightly better than random decision)
and adds Wald’s Sequential Probability Ratio Test [26].
WaldBoost produces a soft-cascade [2, 27, 23] classifiers
with near optimal decision strategy which minimizes av-
erage number of weak classifiers evaluated per sample for
target false negative rate α.

Ht(x) =

t∑
i=1

hi(x)

St =

{
−1 when Ht(x) > θt

Otherwise evaluate St+1

(1)

The evaluation of a classifier H(x) for input sample x is
defined by Equation 1. From the implementation point of
view, given the sample x, the classifier sequentially eval-
uates functions ht(x), t ∈ 0, 1.., T , and accumulates the
strong classifier response Ht. In each step t the Ht is com-
pared to θt and the sample is rejected when Ht(x) < θt,
otherwise the evaluation proceeds with the step t+ 1.

In this work, WaldBoost is used for classifier learning and
Local Binary Patterns (LBP) [30] and Local Rank Func-
tions (LRD, LRP) [11] are used as a basis for weak clas-
sifiers.

2.2 Acceleration Methods
The acceleration can be done in several ways. On the
algorithmic level, the speed-up can be achieved by mod-
ification of classifier structure, e.g. Cascade [25] or soft-
cascade [2, 23] is more optimal than pure AdaBoost. Other
modification is that the classifier can use an information
from a sub-window to predict responses on neighboring
positions of sub-windows [28]. Other approaches are pos-
sible as well [8]. Beside the algorithmic acceleration, the
implementation can be fine-tuned to better exploit the
underlying computational architecture, e.g. multi-core ar-
chitectures, SIMD, graphics hardware and custom hard-
ware.

On the multi-core architectures, process can be paral-
lelized by the control-flow transformation employing more
computing elements. In practice, it means to use multi-
thread interfaces (like threads, OpenMP [3], Intel Thread
Building Blocks (TBB) [21], Posix threads and others)
to execute a code on the code. In the context of object
detection, the multiple computing cores can be used for
processing of multiple frames, processing of multiple sub-
windows and processing of multiple weak classifiers in the
same sub-window.

Different acceleration possibility is to use properties of
SIMD architectures offering data-parallel processing. Many
modern CPUs (like Intel, AMD or PowerPC) contain stan-
dard instruction set which can process integers and floats.
This set is extended with a set of vector instructions which
work over vectors of data stored in registers. Vector in-
structions typically include standard arithmetic and logic
instructions, instructions for data access and other data
manipulation instructions (load/store, packing, unpack-
ing, etc.). The SIMD principles can be used with great
benefit in applications where large data is processed; e.g.
image processing (FIR filtering). Each instruction can
load a vector of data and apply an operation on them.
Then, for example, memory copying can be accelerated
by moving blocks of data (e.g. 16 byte blocks using Intel
SSE) instead of individual bytes. On the other hand, not
all algorithms can be vectorized as the flow control can
depend on the data. In the context of the object detec-
tion, the main application of the data parallelism is in
feature extraction [7, 16]. There are two main options
how to employ it. First, to keep the evaluation code as is
and calculate N spatially close responses simultaneously.
The second method is to calculate only a single feature
at the time and process all feature data in parallel using
SIMD instructions [16].

Graphics hardware offers interesting tools for implemen-
tation of the detection as well. Programmable shaders
can be used on traditional GPUs (Graphics Processing
Units) [20] through OpenGL or DirectX interfaces using
shader programming languages (GLSL or HLSL). GPG-
PUs (General Purpose GPUs) can be used through CUDA
or OpenCL programming languages [10, 9].

Programmable hardware, namely Field Programmable Gate
Arrays (FPGA) can be used for the detection as well [29,
6, 12, 15]. While the algorithms of the object detection are
in the principle the same for software and hardware, the
hardware platform offers features largely different from
the software and thus the optimal methods to implement
detection in programmable hardware are often different
from the ones used in software. In many cases, the hard-
ware implementation can be more efficient than the soft-
ware implementation. Typical use of hardware is a) pre-
processing where an image is processed in order to reject
majority of background samples [18], and b) complete de-
tection where the hardware unit outputs parameters of
the detected objects [29].

3. Classification Cost and its Minimization
This section presents contribution of the thesis – min-
imization of classification cost of WaldBoost classifiers
through combination of different run-time implementations
of object detection. Sources of the classification cost are
twofold. Firstly, the classifier has its inherent cost given
by the learning process. When executing the classifica-

Information Sciences and Technologies Bulletin of the ACM Slovakia 3

tion on a set of images, there is average number of weak
classifiers that has to be evaluated to reach the decision.
Classifiers executing lower number of weak classifiers are
faster and have therefore lower cost. Secondly, the cost is
a property of the classification engine (or run-time imple-
mentation) in which the object detection is executed. The
engine can be implemented by various methods – parallel
evaluation of weak classifiers, parallel evaluation of im-
age sub-windows, etc.; and on various platforms offering
different means of classifier evaluation – SIMD, FPGA,
etc. The knowledge of the classifier properties and prop-
erties of the detection engines can be used for reduction
of computational effort. The reduction can be performed
by combining two or more detection engines, each exe-
cuting different part of classifier [17]; e.g.: hardware pre-
processing unit connected to post-processing unit on tra-
ditional CPU. The reduction can be applied to various
types of cost (computations, memory, hardware price,
etc.). In this thesis, the interest is in minimization of com-
putational effort and the relative cost thus roughly cor-
responds to the computational time (except where noted
otherwise).

3.1 Classifier Properties
The main property of WaldBoost classifiers is the prob-
ability of evaluation of a weak classifier, reflecting how
often a weak classifier is executed during the detection.
This value p can be calculated for every stage i from
statistics obtained on a dataset of images. Due to re-
jection nature of WaldBoost classifiers, the sequence of
pi is decreasing. The first stage is evaluated always; i.e.
the p0 = 1. The evaluation probability captures intrinsic
computational complexity of the classifier.

The stage execution probability depends mainly on the
classifier rejection rate – how rapidly are samples rejected
by the early weak classifiers. A classifier, can have dif-
ferent stage execution probabilities when using different
implementations of the evaluation. For example, consider
an implementation which evaluates four weak classifiers in
one step and applies the WaldBoost threshold after this
’bunch’ is evaluated. First four weak classifiers would
have probability of evaluation equal to 1, even though ex-
ecution of all of them is not necessary in most cases. The
next four would have probability equal to each other, and
so on. Therefore, the stage execution probability is a
property of the classifier and the implementation of its
evaluation.

3.2 Cost Evaluation
In the case of the AdaBoost and WaldBoost classifiers the
total cost C is proportional to sum of individual costs of
executed weak classifiers and it can be calculated by (2).
The T is the length of classifier, k is the overall classi-
fier cost which symbolizes evaluation cost on particular
platform on which the classification is implemented. The
p is probability of execution of particular weak classifier
(see Section 3.1). The c is relative cost of the weak clas-
sifier evaluation which addresses the possibility that the
weak classifiers have different cost (due to use of different
features for example).

C = k

T∑
i=1

pici (2)

When analyzing real classifiers, p can be obtained from
the statistics on input images and can be obtained c by
time measurement or other cost estimation and k can be
set to a constant value (k = 1). In the object detection,
most common are homogeneous classifiers; i.e. those with
all weak classifiers of the same type and with same type
of features. In such cases, the cost of weak classifier is
constant ci = c. Additionally in AdaBoost, all weak clas-
sifiers are executed every time and the probability of ex-
ecution of all weak classifiers is equal to pi = 1. The C
from (2) can be thus simplified to C(AB) (for AdaBoost)

and C(WB) (for WaldBoost) in (3).

C(AB) = knc C(WB) = kc

n∑
i=1

pi (3)

Considering a classifier of length T , the value C gives us
an expected cost of evaluation of the classifier. The mea-
sure is abstract and it can express different facts about
the analyzed classifier. For example, when the c is set
to 1, the measure express number of weak classifiers exe-
cuted in average. Or when set according to time needed to
evaluate particular classifier, the C express average time
needed to evaluate the classifier.

3.3 Cost Minimization
Besides the properties of a classifier, the properties of run-
time implementation also contributes to the total cost.
Implementations with different properties exist – differ-
ences can be in design of feature extraction, image scan,
multi-scale detection, etc. Imagine, for example, an im-
plementation A which can very efficiently evaluate K > 1
weak classifiers in a row, but it always evaluates all of
them no matter how many weak classifiers is actually
needed for the evaluation. It could be pre-processing unit
implemented in hardware which rejects areas without oc-
currence of target object. The other implementation B in
software can evaluate the classifier in standard way. The
computational cost for one feature in A is much lower than
in B but implementing the whole classifier in the hardware
is hard to achieve due to limited resources. Moreover it
could be uneconomic to do so as the hardware resources
are relatively expensive.

C = arg min
0≤u≤T

(
k1

u−1∑
i=0

p1,ic1,i + k2

T−1∑
i=u

p2,ic2,i

)
(4)

x y

Classifier

Implemenation A

(FPGA)

Implemenation B

(software)

u

h1 h2 h3 hT

Figure 1: Composition of two implementations of
classification. First u classifiers are evaluated in
FPGA and the rest in software.

Both implementations can be put together in a composed
implementation. The problem here is how many weak
classifiers should be put in hardware unit and how many
is left for the software. The cost of both parts can be

4 Juránek R.: Acceleration of Object Detection using Classifiers

measured and sum of the individual costs of both parts
gives total cost C. The composition with the minimal
total cost can be found using Equation (4).

The composition of two phases can be fine tuned by one
parameter – division point u. Equation 4 shows the min-
imization problem where C is total minimal cost of the
evaluation, u is point of classifier division, k, c and p cor-
respond to the parameters of the cost computation from
Equation 2. Note, please, that although the properties p
of classifier are same for both parts, the p can be in gen-
eral different for each part. This is due to the structure
of the evaluation in the particular implementation which
can force different probabilities of feature evaluation e.g.
by evaluating more features in one step (see Section 3.1).

When going beyond the example given above, more than
two phases of evaluation and the minimization is thus
multi-dimensional. In general case described by (5), the
classifier division is vector u which values are searched
for in order to find best composition of parts with differ-
ent properties. Note that ui can be equal to ui+1 and
some part could be in fact skipped when it is evaluated
as useless in the optimization.

C = arg min
u

M∑
m=1

km um−1∑
i=um−1

pm,icm,i


s.t.
u0 = 0
uM = T
ui−1 ≤ ui, 0 ≤ i ≤M

(5)

In practical applications, it is easy to get the stage ex-
ecution probabilities p – it reflects classifier behavior on
images. On the other hand, it could be tricky to identify
values of c and k. It has to be done by a careful examina-
tion of the performance of the particular implementation
of the detection on the target application, e.g. by precise
measurement of time needed for execution of the weak
classifier.

4. Experiments and Results
The objective of the experiments is to test the hypoth-
esis about minimization of total cost using composition
of classifier run-time implementations. Firstly, the im-
plementations used in this thesis are described and their
performance is measured. This measurement serves as
cost measure in the subsequent experiments. Secondly,
classification cost of different composition is minimized
using principles described in Section 3 and the theoreti-
cal calculations are compared to the real measurements.
The evaluation metric used in the thesis is improvement
of performance of object detection.

4.1 Classification Cost Measurements
Classifiers used in the experiments were face detectors
trained with WaldBoost algorithm in experimental frame-
work developed at Faculty of Information Technology [14].
Classifiers with different properties were used in the ex-
periments – LBP features, α ∈ {0.02, 0.05, 0.1, 0.2} and
maximum 2× 2 pixel block.

As a baseline, software implementation working on inte-
gral image was selected, as it is a standard way of im-

PC1
CPU Intel Core i5
Cores 4

Frequency 3.3 GHz
Memory 4 GB

OS Debian 32 bit

Table 1: Specifications of the two machines used
in the experiments.

plementation of the detection. The other used implemen-
tations in software were implementations that use SSE
instructions either for evaluation of features (SSE-A, SSE-
B) or pre-processing (SSE-C).

Additionally, an FPGA pre-processing unit (FPGA) is
used in the experiments [18]. This unit can contain up
to N classifiers and it evaluates always all weak classifiers
in parallel and thus it works as a simple AdaBoost unit
which applies WaldBoost thresholds after evaluation of all
weak hypotheses.

The cost of software implementations correspond to a
time needed for evaluation of a weak classifier. The time
was measured on a dataset of 130 images (CMU dataset)
with different resolution and content. Each image was
processed ten times and the times were averaged. In to-
tal, the cost was evaluated from around 26 million classi-
fications which is enough to get accurate estimate. The
measurement was performed on two different computers
(Table 1) with CPU frequency set to constant value; i.e.
no frequency scaling allowed, and single-thread code was
used.

The cost of the classifier in the hardware implementation
was set as an area needed for the classifier in the FPGA
circuit, reflecting the cost of the chip. In this experiments,
the cost is set constantly to ci = 1

N
where N corresponds

to a number of weak classifiers which can be efficiently
stored in typical low cost FPGA (N = 50 is assumed
in experiments). Certainly, better cost functions could
be found. For example cost incorporating properties of
real device, like feature evaluation speed or or real price
of the device. The cost selected in this work is selected
to illustrate the principle of the cost minimization. In
general, setting the cots to a low value, we simply say
that the cost of the hardware unit is not of much interest
to us, and conversely, setting the cost to a large value, we
say that the cost of the hardware is very important.

For each classifier, stage execution probability (see Sec-
tion 3.1) was obtained from detection results on the CMU
dataset.

Table 2 shows measurements of classification cost ci for
different types of features for different implementation.
The cost value is independent on the value of classifier α.
The costs for all classifiers were thus averaged to get more
precise estimate.

On the left side, Fig. 2 shows stage execution probabilities
pi for the classifiers in the experiments. Note that pi for
classifiers with higher false negative rate α decrease faster.
This results in lower number of weak classifiers evaluated
in average, and ultimately, to higher classification speed
compared to the more accurate classifiers with lower false

Information Sciences and Technologies Bulletin of the ACM Slovakia 5

PC1
LBP LRD LRP

INTEGRAL (ref.) 0.0421 0.0466 0.0464
SSE-A 0.0236 0.0269 0.0306
SSE-B 0.0114 0.0129 0.0117
SSE-C 0.015 – –

Table 2: Costs ci of weak hypotheses evaluation
in different implementations of detection run-time
on two different computers used in the experi-
ments. Note that the SSE-C implementation can
evaluate only LBP features.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000

LBP

α=0.01

α=0.02

α=0.05

α=0.10

α=0.20

 1

 10

 1 10 100 1000

LBP

α=0.01

α=0.02

α=0.05

α=0.10

α=0.20

Figure 2: Top, stage execution probabilities for
classifiers used in the experiments. Bottom, clas-
sifier cost (measured in number of weak classifiers)
grows with length of the classifier.

negative rate. The right column of Fig. 2 shows speed
comparison of the classifiers – average number of weak
classifiers evaluated per window.

4.2 Cost Minimization
This section gives results of classification cost minimiza-
tion based on results described in previous section. First,
compositions of classifier implementations used in the ex-
periments are described. Then the results are presented
and compared to real measurements.

In this experiment, classifiers were divided in two parts.
First part is evaluated in the hardware pre-processing
unit. The second part is left for evaluation in the soft-
ware using one of the above described run-time imple-
mentations. Classifier cost estimation method and cost
minimization described in Section 3 is used to estimate
optimal length of the pre-processing unit according to
the cost measure defined in Section 4.1. The optimiza-
tion objective is thus minimization of circuit area and,

at the same time, minimization of the amount of compu-
tations in the software. By combination of such diverse
cost measures the result (total cost C) given by the cost
evaluation can be viewed as a ’relative cost’ but the inter-
pretation of the value might be somewhat problematical.
This does not, however, matter too much as we do not
care about the value of the cost but about the position of
the minima.

Figure 3 shows results of the minimization of total cost
on the PC1 for the classifiers described above. The plots
show dependence of total cost on setting of classifier di-
vision point. The division with minimal cost is marked
by a circle. Note that slower classifiers (low false negative
rates, α) result in longer part in hardware unit, meaning
that the hardware should take care of majority of com-
putations and the post-processing is left for a software.
Another notable fact is that when using slower implemen-
tation in the software (or slower computer), larger part of
computations is left for hardware unit. This means that
faster computers/implementations tend to compute more
weak classifiers in software.

Comparison of the cost minimization with real measure-
ment in a few selected cases is shown in Fig. 4. Note
that although the scale of the curves can be sometimes
different, the position of the minima is approximately in
the place predicted by the optimization. The difference
is caused mainly by the overhead introduced by switch-
ing of run-time during the detection, data and instruction
caching, etc. (which is not included in the optimization).
The optimization thus gives a good advice for classifier
division.

5. Conclusion
This paper presented a method for calculation of classi-
fication cost for WaldBoost classifiers and a method for
composition of different run-time implementation into a
coherent unit with minimized cost. In the experiments,
presented in Section 4, the hypothesis about the compo-
sition of of the run-time implementations has been ver-
ified on an example with a hypothetical hardware unit
and a software implementation. It turns out that it is
indeed beneficial to divide the classifier evaluation into
two (or even more) parts. This division allows for moving
significant portion of computations into the implementa-
tion which can efficiently reject most of background sub-
windows and leave the rest of computations for poten-
tially slower software unit. These results are supported
by measurements The optimization of the division can be
tuned for the particular classifier and particular hardware
on which the detection is executed.

The principles described in this thesis can be used, for
example, to automatically tune object detection for best
performance with respect to the properties of the classi-
fier and the machine on which the detection is executed,
by combination of more implementations of the classi-
fier evaluation. Other example can be a design of smart
camera which can produce, along with standard image,
an image pre-processed by a classifier or directly param-
eters of detected objects. The cost minimization allows
for composition of parallel and sequential hardware units
and the cost criterion used for minimization can be e.g.
power consumption, chip area or other.

Further research include implementation of the object de-

6 Juránek R.: Acceleration of Object Detection using Classifiers

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

R
e

la
ti
v
e

 c
o

s
t

Division point

LBP

Intensity
Integral
SSE-B
SSE-A
SSE-C

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

R
e

la
ti
v
e

 c
o

s
t

Division point

LBP

Intensity
Integral
SSE-B
SSE-A
SSE-C

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

R
e

la
ti
v
e

 c
o

s
t

Division point

LBP

Intensity
Integral
SSE-B
SSE-A
SSE-C

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

R
e

la
ti
v
e

 c
o

s
t

Division point

LBP

Intensity
Integral
SSE-B
SSE-A
SSE-C

Figure 3: Search for optimal division point on
PC1. Classifiers ware divided to two parts, first
executed in FPGA and the second in PC1 (differ-
ent run-times are showed as curves in plots). The
plots shows the cost evaluation for four different
classifiers with α of 0.02, 0.05, 0.1 and 0.2 respec-
tively. LBP features were used. The position with
minimal cost is marked by a point.

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

R
e

la
ti
v
e

 c
o

s
t

Division point

LBP

Intensity
Integral
SSE-B
SSE-A
SSE-C

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

R
e

la
ti
v
e

 c
o

s
t

Division point

LBP-a02,PC1

Intensity
Integral
SSE-A
SSE-B
SSE-C

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

R
e

la
ti
v
e

 c
o

s
t

Division point

LBP

Intensity
Integral
SSE-B
SSE-A
SSE-C

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

R
e

la
ti
v
e

 c
o

s
t

Division point

LBP-a20,PC1

Intensity
Integral
SSE-A
SSE-B
SSE-C

Figure 4: Comparison of optimization results with
measurements on PC1. Each couple of plots shows
(left) result of optimization and (right) result of
measurement.

Information Sciences and Technologies Bulletin of the ACM Slovakia 7

tection in a hardware unit, combination of this unit with
software implementation in an embedded platform and
fine tuning of this combination by using the cost evalua-
tion and minimization. The possible criteria for the mini-
mization include power consumption of the whole system
and processing speed.

References
[1] C. M. Bishop. Pattern Recognition and Machine Learning

(Information Science and Statistics). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

[2] L. Bourdev and J. Brandt. Robust object detection via soft
cascade. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, volume 2, pages 236–243, 2005.

[3] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon. Parallel programming in OpenMP. Morgan Kaufmann
Publishers, 1. edition, 2001.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In IEEE Computer Society Conferenceon
Computer Vision and Pattern Recognition, volume 1, pages
886–893, Washington, DC, USA, 2005. IEEE Computer Society.

[5] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification
(2nd Edition). Wiley-Interscience, November 2000.

[6] J. Granát, A. Herout, M. Hradiš, and P. Zemčík. Hardware
acceleration of adaboost classifier. In Workshop on Multimodal
Interaction and Related Machine Learning Algorithms (MLMI),
pages 1–12, 2007.

[7] A. Herout, M. Hradiš, R. Juránek, and P. Zemčík. Implementation
of the "local rank differences" image feature using simd
instructions of cpu. In Proceedings of Sixth Indian Conference on
Computer Vision, Graphics and Image Processing, page 9, 2008.

[8] A. Herout, M. Hradiš, and P. Zemčík. Enms: Early non-maxima
suppression. Pattern Analysis and Applications, 2011(1111):10,
2011.

[9] A. Herout, R. Jošth, R. Juránek, J. Havel, M. Hradiš, and
P. Zemčík. Real-time object detection on cuda. Journal of
Real-Time Image Processing, 2011(3):159–170, 2011.

[10] A. Herout, R. Jošth, P. Zemčík, and M. Hradiš. Gp-gpu
implementation of the "local rank differences" image feature. In
Proceedings of International Conference on Computer Vision and
Graphics 2008, Lecture Notes in Computer Science, pages 1–11.
Springer Verlag, 2008.

[11] A. Herout, P. Zemčík, M. Hradiš, R. Juránek, J. Havel, R. Jošth,
and M. Žádník. Low-Level Image Features for Real-Time Object
Detection, page 25. IN-TECH Education and Publishing, 2009.

[12] M. Hiromoto, K. Nakahara, H. Sugano, Y. Nakamura, and
R. Miyamoto. A specialized processor suitable for adaboost-based
detection with haar-like features. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8, June 2007.

[13] D. W. Hosmer and S. Lemeshow. Applied logistic regression
(Wiley Series in probability and statistics). Wiley-Interscience
Publication, Sept. 2000.

[14] M. Hradiš. Framework for research on detection classifiers. In
Proceedings of Spring Conference on Computer Graphics, pages
171–177. Comenius University in Bratislava, 2008.

[15] S. Jin, D. Kim, T. T. Nguyen, B. Jun, D. Kim, and J. W. Jeon. An
fpga-based parallel hardware architecture for real-time face
detection using a face certainty map. IEEE International
Conference on Application-Specific Systems, Architectures and
Processors, 0:61–66, 2009.

[16] R. Juránek, A. Herout, and P. Zemčík. Impelementing local binary
patterns with simd instructions of cpu. In Proceedings of Winter
Seminar on Computer Graphics, page 5. West Bohemian
University, 2010.

[17] R. Juránek, M. Hradiš, and P. Zemčík. Real-Time Systems, chapter
Real-Time Object Detection with Classifiers, page 21. InTech
Education and Publishing, 2012.

[18] F. Kadlček, R. Juránek, and P. Zemčík. Automatic synthesis of
classifiers in fgpa. In International Bata Conference for Ph.D.
Students and Young Researchers, page 12. Univerzita Tomáše Bati
ve Zlíně, Zlín, CZ, 2011.

[19] C. P. Papageorgiou, M. Oren, and T. Poggio. A general framework
for object detection. In ICCV ’98: Proceedings of the Sixth
International Conference on Computer Vision, page 555,
Washington, DC, USA, 1998. IEEE Computer Society.

[20] L. Polok, A. Herout, P. Zemčík, M. Hradiš, R. Juránek, and
R. Jošth. “local rank differences” image feature implemented on
gpu. In Proceedings of the 10th International Conference on
Advanced Concepts for Intelligent Vision Systems, Lecture Notes
In Computer Science; Vol. 5259, pages 170–181. Springer Verlag,
2008.

[21] J. Reinders. Intel threading building blocks : outfitting C++ for
multi-core processor parallelism. O’Reilly, 2007.

[22] R. E. Schapire and Y. Singer. Improved boosting algorithms using
confidence-rated predictions. Mach. Learn., 37(3):297–336, 1999.

[23] J. Sochman and J. Matas. Waldboost - learning for time
constrained sequential detection. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, pages 150–156, Washington, DC, USA, 2005. IEEE
Computer Society.

[24] J. Sochman and J. Matas. Learning fast emulators of binary
decision processes. International Journal of Computer Vision,
83(2):149–163, June 2009.

[25] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 1:51–518 vol.1, 2001.

[26] A. Wald. Sequential Analysis. John Wiley and Sons, Inc., 1947.
[27] R. Xiao, L. Zhu, and H.-J. Zhang. Boosting chain learning for

object detection. In ICCV ’03: Proceedings of the Ninth IEEE
International Conference on Computer Vision, page 709,
Washington, DC, USA, 2003. IEEE Computer Society.

[28] P. Zemčík, M. Hradiš, and A. Herout. Exploiting neighbors for
faster scanning window detection in images. In ACIVS 2010,
LNCS 6475, page 12. Springer Verlag, 2010.

[29] P. Zemčík and M. Žádník. Adaboost engine. In Proceedings of
FPL 2007, page 5. IEEE Computer Society, 2007.

[30] L. Zhang, R. Chu, S. Xiang, S. Liao, and S. Z. Li. Face detection
based on multi-block lbp representation. In ICB, pages 11–18,
2007.

Selected Papers by the Author
Polok Lukáš, Herout Adam, Zemčík Pavel, Hradiš Michal, Juránek

Roman, Jošth Radovan. "Local Rank Differences" Image Feature
Implemented on GPU. In: Proceedings of the 10th International
Conference on Advanced Concepts for Intelligent Vision Systems,
Berlin, Heidelberg, DE, Springer, 2008, p. 170-181, ISBN
978-3-540-88457-6

Herout Adam, Zemčík Pavel, Juránek Roman, Hradiš Michal.
Implementation of the "Local Rank Differences" Image Feature
Using SIMD Instructions of CPU. In: Proceedings of Sixth
Indian Conference on Computer Vision, Graphics and Image
Processing, Bhubaneswar, IN, IEEE CS, 2008, p. 9, ISBN
978-0-7695-3476-3

Herout Adam, Juránek Roman, Zemčík Pavel. Implementing the
Local Binary Patterns with SIMD Instructions of CPU. In:
Proceedings of WSCG 2010, Plzeň, CZ, ZČU v Plzni, 2010, p.
39-42, ISBN 978-80-86943-86-2

Herout Adam, Zemčík Pavel, Hradiš Michal, Juránek Roman, Havel
Jiří, Jošth Radovan, Žádník Martin. Pattern Recognition, Recent
Advances. Vienna, AT, IN-TECH, 2010, p. 111-136, ISBN
978-953-7619-90-9

Herout Adam, Jošth Radovan, Juránek Roman, Havel Jiří, Hradiš
Michal, Zemčík Pavel. Real-time object detection on CUDA In:
Journal of Real-Time Image Processing, Vol. 2011, No. 3, DE, p.
159-170, ISSN 1861-8200

Juránek Roman, Hradiš Michal, Zemčík Pavel. Real-Time Systems,
Real-Time Algorithms of Object Detection using Classifiers
Vienna, AT, IN-TECH, 2012, p. 111-136, ISBN
978-953-7619-90-9

