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Abstract
The structures and textures form the various patterns on
the surface of objects. The analysis of these structures
significantly contributes to the automatic processing of
the scene by computer vision methods. The similarity of
different textures and the structural variability in some
materials (marble, wood, fur, . . . ) increase the difficulty
of this problem. Modern texture analysis methods can be
applied in digital pathology, where tissue scans structures
resemble textures. According to the literature, the poten-
tial for improving the analysis and synthesis of textures
are mostly the deep learning methods, neural networks.
This paper presents a modern approach contributing to
three areas of texture processing. The proper neural net-
work architecture can determine the similarity of texture
patches and represent extracted features in its own latent
space. The similarity and dissimilarity classification of
textures is applied in synthesis to recognize real and gen-
erated textures, and further exploited in analysis of his-
tological data. We measure the success of our approaches
on public datasets and compare them with state-of-the-
art methods. Our approaches achieve the level of state-
of-the-art methods or contribute to the interpretability of
neural network decisions.

Our results contribute to the proof of the incredible power
of deep learning and its potential in processing textures
with different levels of heterogeneity. The proposed mod-
els of neural networks for support of cancer diagnostics
can detect diagnostically interesting regions. They also
point out that for histologists to understand the predic-
tions of neural networks, it is necessary to process and
present large tissue areas with context and detail, even
larger than a simple network can evaluate, with further
extension to the interpretability of network predictions
and decisions.
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1. Introduction
Many machine vision, image processing and computer vi-
sion algorithms aim to decompose the scene into a set of
simplified automatically generated descriptions, to help
other applications to process data more easily. Tradi-
tional descriptors usually simplify the task by assuming
the uniformity of objects’ structure. This is is rarely a
case in real world objects, where multiple structures form
heterogeneous repeating patterns. The texture of object
is one of visual characteristics utilized in the segmenta-
tion and recognition and significantly contribute to the
understanding of a scene.

Texture analysis is a computer vision field of study that
attempts to quantitatively describe intuitive qualitative
visual characteristics of objects and regions in an image.
The usual result of quantitative description methods is
a vector of distinctive features extracted from the ana-
lyzed texture. The traditional approaches are statisti-
cal, structural, model-based, and transform-based meth-
ods [25]. These four categories are well-established, how-
ever, now considered out-of-date compared to the perfor-
mance of more recent modern approaches. The graph-
based and entropy-based approaches have become more
popular since the 2000’s. Additionally, the seventh cat-
egory methods are based on deep learning and achieved
high impact on computer vision and related fields. Their
robustness and the self-learning approach assured their
state-of-the-art results in all fields and superior perfor-
mance over traditional methods. However, its application
is limited to big datasets and low interpretability.

The computational texture analysis has achieved fine re-
sults in texture classification over the years [21]. The easy
availability of large datasets with high-resolution photos
allowed the application of neural networks to texture pro-
cessing. The literature presents many papers analyzing
texture similarity by trying to mimic human perception.
Human visual perception ignores small per-pixel intensity
variations and can recognize textures on global and local
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level of detail. Nowadays the most promising methods
resembling the perception of the human visual system are
based on convolutional neural networks.

The synthesis techniques can be categorized into three
major families: procedural, exemplar-based, and model-
based texture synthesis methods [2]. Model-based meth-
ods and deep learning-based methods are able to create
a descriptive model of a texture that can be used to re-
produce the texture and synthesize the texture samples
artificially. The goal of synthesis algorithms is to cre-
ate a texture that is indistinguishable from the real-world
textures. Deep learning-based methods learn to define
the texture by optimized parameters and achieve superior
quality [12, 14, 10]. However, most of the state-of-the-art
approaches are robust enough to learn only one texture
per model. Even though, the generation process with the
optimized model is fast, the training and re-training of
the model is very expensive.

A significant contribution and benefits of texture analy-
sis application are achieved in biomedicine and medical
imaging, because many medical images have characteris-
tics similar to textures. Breast cancer is one of the most
widespread causes of women’s death worldwide. Accord-
ing to WHO, breast cancer has the second-highest in-
cidence and is the fifth leading cause of death globally,
estimated at 680 thousand deaths in 2020 [1]. During
the diagnostics, if the series of non-invasive tests locate
a anomaly, the biopsy extracts a tissue sample from the
area for the further examination. The experts then exam-
ine the microscopy scan of the tissue. This process is time
consuming and puts a lot of pressure on histologists. An
automated support method can help speed up the process
and relieve the doctors. However, such method requires a
level of interpretability. Due to the black box nature and
the lack of explanation of network decisions, deep learning
techniques application in medical imaging is problematic.

2. Related work
2.1 Evaluating texture similarity
• Distance measures: The simplest option is to

measure the spatial distance between 2D signals or
extracted feature vectors. Kokare et al. [19] review
9 distance metrics on features extracted using Gabor
wavelet to select the most suitable one for texture
retrieval.

• Spectrum, shape, statistics: The statistics ap-
proaches assume the texture can be decomposed as a
statistical repetition of structural patterns. Zujovic
et al. [35] introduce a set of 5 structural texture
similarity metrics (STSIM) using different texture
statistics that characterize coefficients of a multi-
scale frequency decomposition (steerable filters). The
method compares the extracted feature vectors by
Mahalanobis distance and achieves state-of-the-art
results. Polec et al. [26] analyze arbitrary shaped
areas (superpixels) and approximates texture by a
set of orthogonal basis functions, which are particu-
larly suitable for periodic or at minimum quasiperi-
odic textures.

• Deep learning: The approaches combined hand-
crafted and deep features than classify the texture
by shallow machine learning models [23]. More com-
plex solutions use well-known architectures to ex-
tract features from textures and compare them by

another custom architecture [11]. Bruna and Mallat
[6] reach the state-of-the-art results with imitating
network using a sequence of Fourier decomposition
layers and adding modulus average pooling to attain
non-linearity.

2.2 Texture synthesis
The literature recognizes three main approaches of example-
based synthesis:

• Non-parametric: The most straightforward ap-
proach is to copy parts of the input texture example
and generate new ones by sticking these parts to-
gether by smoothing the borders. This approach is
also referred as pixel/patch-based synthesis. Their
main problem is a lack of the stochastic information
of the original texture the visible repetitiveness.

• Parametric: More complex approaches learn the
statistics of structure of texture to create computa-
tional descriptive model. The methods aim to model
textures as a continuous 2D signal.

• Deep learning generative models: Many spe-
cialized architectures of the generative models are
powerful in various generative tasks [22, 16]. They
train on example texture to optimize their parame-
ters and generate new samples from a random noise
or by modifying the input example.

From the deep learning models, the Generative adver-
sarial networks (GAN) achieved state-of-the-art quality
for synthesized outputs. However, the Variational Auto-
Encoders (VAE) are easier to train and to control the
variations of the expected output, even though they pro-
duce textures of comparably lower quality.

Generative adversarial networks. Jetchev et al. [14]
introduces GAN for arbitrary sized output to generate
similar samples by interpolating on manifold of various
samples. Zhou et al. [34] presents an example-based syn-
thesis of non-stationary textures. The adversarial learn-
ing approach extracts the style of input texture to gen-
erate a new sample of the same style with increased di-
mensions of output sample. Fruhstuck et al. introduced
TileGAN that achieved state-of-the-art quality in tiling
non-stationary textures into large-scale image [10].

Variation Auto-Encoders. Chandra et al. [8] uses re-
current variational auto-encoder for synthesis of simple
texture by iterative tiling of generated neighboring tex-
ture samples in each direction. However, each direction
tiling must have individually trained model to ensure the
correct tiling. The main drawback of VAEs is the blurri-
ness of an output image frequently referenced in various
studies and referred to as unsolved with several probable
causes.

2.3 Medical imaging
Several proposed deep learning approaches have shown
state-of-the-art results in different areas of computer vi-
sion and medical imaging, even for classification of breast
cancer from histopathology images. In biopsy tissue im-
age processing and analysis, it is important to correctly
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identify structures deformed by cancer to specify its stage
and form. The appearance of tumors of the same class is
very different, the overall structure of tissue has many
visual formations, complex texture, and high variance,
which is still referred as a great problem even in recent
studies [29, 13].

These problems are considerable challenges for automatic
and precise classification of microscopy images for breast
cancer. The approaches could be divided into two streams
according to the data used: typical microscopy tissue
images; more modern Whole Slide Images containing a
very high-resolution scan of a magnified tissue sample in
a pyramidal structure.

• Microscopy tissue images: Novel approaches try
to overcome mentioned problems with additional
heuristics, sometimes with architecture alternations
[17, 3]. The usually used size of a cut-out sample
is 128 × 128 and according to Araújo et al. [4] is
small and may not contain the overall structure, so
they recommend using samples of 512× 512 pixels,
depending on magnification. On the other hand, re-
cently Celik et al. [7] experimented with advanced
models to recognize Invasive Ductal Carcinoma. Their
DenseNet and ResNet models were pre-trained on
ImageNet and finetuned on a dataset with 227542
samples of 50× 50 pixels, reaching F1 score to 94%.

• Whole Slide Images: Tripathi et al. [31] have
used annotated WSIs and 400 cut-out samples. They
state that if the prediction needs to be made for the
whole tumor or gland, the network cannot lose spa-
tial nor structural information.

3. Preliminaries
Neural networks are deep multi-layered robust models and
the essence of deep learning. The layers are made up of
computational units, the neurons without being intercon-
nected in the same layer. To increase the computational
power of neural network, the layers are connected one
after another in various ways. The first layer receives in-
put x, and the last layer exports the desired predictions ŷ
that should correspond to annotated ground truth y. The
other layers are hidden and represent the network map-
ping function y = f(x). Feed-forward operation propa-
gates the input signal through the network. Backprop-
agation is a gradient descent algorithm widely used to
train the networks. It propagates training error through
all weights and computes their gradients as partial deriva-
tion. The optimizer then updates the weights according to
gradient and learning rate. The training optimizes param-
eters to minimize the error - loss of the objective function
approximation.

3.1 Siamese Neural Networks
The Siamese Networks are designed to compare two input
patterns by computing the corresponding similarity mea-
sure. The networks extract feature vectors and compare
them with a similarity metric, which can be cosine angle,
cross entropy classification, and any distance metric. The
standard architecture shares weights between two network
branches, with other possible modifications.

Contrastive loss function. The most used loss function
L is based on the principles of a spring system. According

to the distance Diθ, the similar pairs are pulled together
and dissimilar are pushed apart.

L(θ, y, x1, x2) = (1−y)
1

2
(Dθ)

2+y
1

2
max(0,m−Dθ)2 (1)

The pairs with high dissimilarity would distort the total
loss, so the contrastive loss contains a margin term m
defining a maximal contribution radius of dissimilar pairs.

3.1.1 Distance metrics
L2 Euclidean: is a standard distance metric of Eu-

clidean space DE( ~x1, ~x2) =
√∑N

i=1(x1i − x2i)2
Mahalanobis: computes a dissimilarity value for vectors
of the same distribution from the covariance matrix.
The absolute value assures the positive value of distance.
DMah( ~x1, ~x2) =

√
|( ~x1 − ~x2)T cov(x1, x2)( ~x1 − ~x2)|

Canberra: the numerator signifies the difference and de-
nominator normalizes the difference. Thus, the interme-
diate divisions between vector values never exceeds 1, and
is equal to 1 whenever either of the attributes is 0.

Dc( ~x1, ~x2) =
∑N
i=1

|x1i−x2|
|x1i|+|x2i|

Bray-Curtis: is similar to the Canberra and directly re-
lated to the Sorensen similarity index. The difference to
Canberra is that it can reach high negative values when
two feature vectors are mutually opposite.

DBC(x1, x2) = |
∑N
i=1

|x1i−x2i|
x1i+x2i

|

3.2 Variational Auto-Encoders
VAE is introduced as architecture that might be able to
generate content [18]. Rezende et al. [28] compared them
to denoising Auto-Encoders and stated they could be a re-
alization of variational inference in latent variable models.
VAEs encode the input x into constrained distribution of
latent vector z in simple cases represented with isotropic
multivariate Gaussian with diagonal covariance structure
containing approximate inference values of mean µ and
standard deviation σ. The vector z is sampled from the
distribution pθ(z) obtained by encoder/approximate in-
ference network qφ(z | x). The sample is then up-sampled
by decoder network pθ(x̂ | z). The general VAE loss rep-
resents the joint log-likelihood of the variables under the
approximate posterior over the latent variables. The term
H(q(z | x)) represents an entropy of the approximate pos-
terior. Maximizing this entropy increases the standard de-
viation of added noise to the predicted mean value, and
also encourages the variational posterior to distribute z
values that could generate x around a mean value rather
than pushing them all to one point. The log-likelihood
is usually a reconstruction error and VAE also use con-
straint, Kullback-Leibler divergence [15] pulling together
the posterior distribution q(z | x) and prior model distri-
bution pmodel(z).

4. Research goals
According to the analyzed literature this paper focuses
on developing and applying novel neural network based
approach for texture analysis and synthesis. All of our
research in the following topics have been published or is
awaiting for the review.

• Evaluation of similarity. We apply a novel neu-
ral network-based approach for texture description.
The approach uses the network as a feature extrac-
tor and texture descriptor computing the feature
vectors of pre-defined size. Our research experi-
ments with multiple distance metrics to compare
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their influence on learning embeddings with con-
trastive loss function.

• Texture synthesis. The Variational Auto-Encoder
is designed to generate new samples by modifying
the latent layer parameters responsible for the re-
construction. The basic model suffers from blurry
outputs with a decreased level of detail. There-
fore, we modify the architecture and design a novel
derivative with enhanced abilities to learn and add
micro-texture details into reconstructed and synthe-
sized texture images.

• Breast cancer diagnostics. Based on our re-
search in texture analysis using deep neural net-
works, we utilize known approaches in the medi-
cal imaging. We develop a special support method
for breast cancer diagnostics from microscopy tissue
images. We propose a classification approach using
a Siamese neural network regarding the implicit in-
terpretation of steps leading to the final cancer class
type prediction.

5. Datasets
5.1 Texture dataset
Unfortunately, most of the public datasets consists of a
relatively small number of samples for each material, or
the structures are too regular. One of only exceptions is
Describable Textures Dataset. We introduce our dataset
similar to the one used in [35] with a sufficient number of
high-resolution textures that makes it applicable to train-
ing the neural network. The gathered dataset is available
online1.

Construction of the dataset. We have downloaded over
450 texture images for free from various online databases.
We obtain images of different natural or artificial materi-
als, and if more images contain identical material (grass,
leather, fur, . . . ), the annotated similarity depends on
the spatial and structural similarity of texture elements.
This allows a simplified annotation of similar and dissim-
ilar pairs. The resolution of downloaded images varies
from 512× 512 to 3200× 2880 which is necessary for the
sampling of the patches, as each texture class is repre-
sented by only one image. Finally, we filtered misleading
images containing multiple texture classes (multi-label)
with resolutions higher than a sampled patch.

5.2 Breast tissue microscopy dataset
We implemented and tested our method on the public
dataset from 2018 Grand Challenge on BreAst Can-
cer Histology images (BACH) competition [5]. In
this research, we use 400 cut-out slices annotated with
one cancer class per slice (normal, benign, In Situ
and invasive carcinoma). The tissue slices are stained
by H&E. Hematoxylin binds to DNA and stains nu-
clei to dark violet. Eosin binds to proteins and stains
other structures to pink. Other color variations are due
to various concentration, mixing colors, and uneven light
absorption. The training set consists of 400 classified im-
ages with uniform distribution of classes. The test set has
100 images without an explicit class label. The cut-outs
are saved in .tiff format in resolution 2048× 1536 with 1
pixel representing 0.42µm receptive area.

1https://bit.ly/texdat

6. Texture similarity evaluation
We have adopted the concept of Siamese Neural Network
to measure the similarity between texture patches. The
architecture of our twin network’s branches is inspired by
AlexNet [20]. We decrease the number of filters layer-
wise, add two more convolutional layers, and substitute
the last two dense layers with global mean pooling layer
and a convolutional layer with 1×1 kernel. An activation
function LeakyReLU follows each convolutional layer. To
experiment with how the network learns the embedding,
we set the size of last layer to 3 (3D coordinates) and to
128 like most of the traditional descriptors. The other
training enhancement is batch normalization layer, that
preserves the distribution of activation values of previous
layer and provides an effective substitution for dropout
layer. The batch normalization is added before every con-
volutional layer (except the first layer and after global
mean pooling) (Table 1).

Table 1: Architecture of a single branch of used
SiamNet - conv = convolutional layer, pool = max
pooling, glob-p = global max pooling, conv/fc =
convolution 1×1 substitution for original fully con-
nected layer.

Layer
Kernel

Size
Stride Dims.

Output
channels

conv1 3× 3 1× 1 150× 150 32
pool1 2× 2 2× 2 75× 75
conv2 3× 3 1× 1 75× 75 64
pool2 2× 2 2× 2 37× 37
conv3 3× 3 1× 1 37× 37 64
conv4 3× 3 1× 1 37× 37 64
pool3 2× 2 2× 2 18× 18
conv5 3× 3 1× 1 18× 18 128
conv6 3× 3 1× 1 18× 18 256
pool4 2× 2 2× 2 9× 9
conv7 3× 3 1× 1 9× 9 256
flatten - - 81× 1 256
glob-p - - 1× 1 256
conv/fc 1× 1 1× 1 1× 1 128 or 3

We experiment with Canberra, Bray-Curtis, and Maha-
lanobis distance and compare it to the performance of
standard Euclidean distance.

The mini-batch size is constant for all experiments with
a size of m′ = 64 patch pairs. The distribution rate of
similar vs. dissimilar pairs in the batch is approximately
equal (50 : 50) and provided by PyTorch DataLoader.
The pair’s are uniformly sampled from classes so it is an
equal probability for the class to be in a similar or dis-
similar pair which does not adversely affect training. We
sample new patches after each epoch, which adds a statis-
tical variability of structures and computational stability.
Each training can run a maximum of 200 epochs, and
early stopping can stop it when the validation loss does
not decrease in seven epochs (patience=7).

6.1 Results
To compare the effectiveness of training and achieved re-
sults, we keep the same architecture for all training runs.
The table 2 below shows the number of epoch evaluated
as best by early stopping, or as the last one with reason-
able value, as the training with the selected network could
fail, and the model would be unusable.
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Table 2: Ending training with the epoch - optimal
results or failed model.

Metric 3D 128D Successful training

Euclidean 148 190 yes
Canberra 189 196 yes
Bray-Curtis 59 8 loss=nan from e70
Mahalanobis 11 - no inverse matrix

Table 3: Evaluation and comparison of several
similarity metrics introduced by Zujovic et al. in
[35] and [36] respectively.

Algorithm P@1 AUC P@1 AUC
PSNR 0.04 0.753 0.14 0.50
(S-)SSIM 0.09 0.446 0.41 0.52
CW-SSIM 0.39 0.921 0.84 0.87
STSIM-1 0.74 0.967 - -
STSIM-2 0.74 0.963 0.86 0.88
STSIM-M 0.96 0.985 0.84 0.80
Gabor f. 0.92 0.979 - -
Wavelet f. 0.84 0.836 - -
Do & Vetterli - - 0.79 0.79
Ojala - - 0.57 0.54

The order of steps for the evaluation:

1. Randomly sample 16000 pairs from validation dataset
for evaluation - to compute the threshold for binary
classification

2. Compute distances between pairs using trained neu-
ral network

3. Draw Receiver Operating Characteristics (ROC) curve
and compute the optimal threshold

4. Randomly sample new 16000 pairs from test dataset
for evaluation

5. Compute distances between pairs and by threshold
classify binary similar/dissimilar samples

6. Compute classification metrics: accuracy, precision,
recall, Area Under Curve (AUC)

We compared our results to the most successful STSIM-
W metric and several others that Zujovic et al. [35] com-
pared their results. The 128D network ROCs are visi-
ble in Figure 1 and accuracy comparisons are in Table 3.
Our method outperform the results of Zujovic et al. The
optimal threshold for binary classification is selected as
maximal TPR with minimal FPR (black dotted lines) -
maximal difference. Comparison of all distance metrics
used by our network: Euclidean, Canberra, Bray-Curtis,
and Mahalanobis. The bottom plot of ROC curves com-
pares several of Zujovic et al. [36] proposed approaches
to traditional methods Wavelet, Gabor, LBP features and
to approaches of Do and Vetterli, and Ojala et al. (PSNR
= peak signal-to-noise ratio, SSIM = structural similar-
ity metric, STSIM = structural texture similarity metric,
CW-SSIM = complex wavelet SSIM)

The results of our experiments show the state-of-the-art
success of SiamNet at determining the similarity of tex-
ture patches. Even the small, memory-optimized archi-
tecture with a 3D feature vector can recognize the texture

Eu.: fpr:0.069, tpr:0.928, thr:0.98
Ca.: fpr: 0.372, tpr:0.588, thr:8.01
BC.: fpr:0.179, tpr:0.757, thr:29.51
Mh.: -

Zujovic et al. [36]

Figure 1: ROC curves (colored curves) with AUC,
threshold and corresponding TPR/FPR. The bot-
tom plot is from Zujovic et al. [36].

classes based on their structure. The comparison of dis-
tance metrics with different characteristics revealed that
even though the metric can be good to compare Gabor
wavelet extracted features [19], it does not necessarily be
good to optimize the embeddings in the network’s feature
space.

6.2 Conclusion
We experimented with four distance metrics to exam-
ine their influence on training and embedding of feature
space. We evaluated that each loss starts at a different
value and preserves the converging oscillation. Like Ma-
halanobis or Bray-Curtis, some cases stopped very soon
before the accuracy of a model could rise to successful
values. In conclusion, the optimization of the neural net-
work and the loss value depends on the selected distance
function and may decrease rapidly or destroy the training.

To evaluate the correct understanding of which samples
are similar, we examined the embeddings of extracted 3D
and 128D feature vectors. On the contrary to the tradi-
tional feature extractors, in deep learning and especially
in contrastive loss, the distance metric is not only com-
paring the extracted features but, more importantly, op-
timizing the embedding of feature space - unfolding the
distribution manifold into space of a chosen distance met-
ric.

We aimed to determine the similarity of textures with
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high structural variations, which are more common in na-
ture. We evaluated the performance of our method by
several classification metrics and it reaches a consider-
able 92.7% accuracy, 92.8% precision, 92.7% recall, and
integral of ROC curve covers 97.9% of the region. We
compared our results to the related work of Zujovic et
al., and we overperformed their approach, assuming the
similarity of our datasets.

7. Texture reconstruction and synthesis
In contrast to VAE we designed our network as a Hierar-
chical VAE (HVAE) with multiple latent layers {z1, ..., z4}
learning features at a different levels of detail. HVAE
can be represented as multiple variational auto-encoders
joined in parallel to each other.

We are training both generative part p(x̂, z) = p(x̂ |
z)p(z) along with inference part of the model q(z | x) by
optimizing the lower bound likelihood p(x̂) =

∫
p(x̂ | z)dz.

The optimization objective for hierarchical VAE after up-
dating loss function of basic VAE with reconstruction er-
ror and distribution constraint of KL-divergence with spe-
cial case when z0 = x and zJ+1 = 0:

L(θ, φ) =
J∑
j=0

Eqφ,pθ (z, x)[log p(zj |z>j)]−DKL(qφ(z|x))

(2)

7.1 Architecture of HVAE
Our architecture uses pyramid approach for learning fea-
tures from multiple-scales which also abstracts different
levels of detail from texture and each latent level of the
variational auto-encoder learns to encode features cor-
responding to the scale level. The architecture is built
from the 2D convolutional layer blocks with 3 × 3 ker-
nels, followed by a batch normalization and LeakyReLu.
The down-sampling layers are replaced by convolution
strides. We intend to generate textures with resolution
of (256× 256× 3). We included 1× 1× nz convolutional
layer before each latent layer for dimensionality reduction.
Then, the output is flattened and fed in parallel to two
fully connected layers with nz units. They are optimized
to represent the Gaussian distribution (µ and σ values) to
sample the latent feature vectors zi. The vector sampled
from the distribution zi ∼ N (µi, σi) is fed into another
fully connected layer and reshaped into 2D output feature
map with the exact same shape as before flattening. We
experimentally choose nz = 40 trainable parameters for
each latent vector. It provides a good trade-off between
the quality of reconstructed and generated samples, and
overall compression of the input sample.

The standard Auto-Encoders and VAEs suffer from lossy
compression in the latent space and generate blurry out-
put lacking high frequency details. One of the main goals
of our research is to increase the quality and reduce
the blurriness of the reconstructed image. We separate
the abstraction into multiple levels in order to synthesize
new patches with increased precision in detail.

• The gradual pyramid addition of information from
hierarchical latent layers contributes to improved re-
constructions and decreases the blurriness.

• The separation forces the model to learn texture fea-
tures of different scales at each level without affect-
ing the resulting texture.

baseline z4 z43 z432 z4321

Figure 2: Visualization of reconstruction of se-
lected baseline texture slices with gradual sam-
pling from trained hierarchical layers. The
columns present reconstructions from the combi-
nation of information on variational latent layers.

• The new textures are sampled from the latent sam-
pling layers, which corresponds to the standard VAE
behavior.

We modified the standard loss function composition for
hierarchical VAE with the averaged KL divergence regu-
larization (Equation 3) helping model to learn indepen-
dent reconstruction information in parallel network branches.
We used standard MSE to optimize the reconstruction ca-
pabilities of the network. Regularization of the distribu-
tion is held by averaged KL-divergence computed over all
four hierarchical latent layers (number 4 in Equation 3).

LV AE = Lrec +
1

4

4∑
i=1

(LjDKL
) (3)

We prepare the input patches with dimensions 256×256×
3 from 4 different texture scales. The 4 scales are squares
with size of the side 128, 256, 384, and 512 pixels respec-
tively, and then reshaped to the required model input
shape. This augments the train data with additional de-
tails at different frequencies for better model evaluation.
The batch size is 16 images for all selected textures and
the network is trained for 50,000 iterations for the recon-
struction of the input image. The synthesis is a possible
by-product of this architecture design.

7.2 Reconstruction
To evaluate the achieved quality, we perform the empirical
qualitative comparisons of texture reconstructions from
gradual sampling from the latent codes. We generate
4 sets of synthesized identical texture samples for each
texture scale 512, 384, 256, 128, on which we observe the
gradual addition of details and independent changes in the
reconstructed structures. Visual demonstration of the ob-
tained texture samples is in Figure 2. The quantitative
evaluation using Fréchet Inception distance on the recon-
structed textures are in Table 4 and compared to Zhao et
al. [33].

7.3 Synthesis
The main focus of our research and the introduction of
our hierarchical architecture is the synthesis of texture
samples. In order to synthesize new texture samples, the
model must learn the continuous linear manifold on the
encoded latent layers. The linear movement on the cor-
rectly optimized latent manifold should not introduce any
artifacts into the generated image.

Our trained model is capable of synthesizing textures in
2 ways:
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Table 4: Fréchet Inception Distance (FID) - Reconstruction task
Texture multiscale 128px 256px 384px 512px

Zhao Ours Zhao Ours Zhao Ours Zhao Ours Zhao Ours
bricks 282.1 187.8 320.3 181.2 349.8 183.8 276.5 243.8 243.3 198.5
camo 203.8 135.4 248.6 144.4 339.1 114.7 197.1 159.3 200.4 222.4
tiles 136.9 240.9 111.8 270.1 131.7 230.8 173.7 287 201 312.2
wall 231 236.5 155.7 278.2 247.4 319.6 288.9 261.3 291.6 167.9

1. Random sampling from all latent layers following
the learned averaged Gaussian distributions zi ∼
N (µi, σi)

2. Conditional sampling and modifying values from
encoded feature vectors of input texture example

Random sampling synthesis. It is very challenging and
demanding on the quality of manifold optimization and
its continuity. We rectified the random variables into the
interval with the highest density of values z ∼ N (µλ, σλ)
of the encoded latent vectors µ, σ based on several ob-
servations. Then we sample the latent vectors z1, . . . , z4
from known distribution with µiλ, σiλ and use the latents
as input to the decoder network, which generates new tex-
ture sample. Interpolating and sampling from the deep-
est latent layer z4 provides high-intensity variations of the
basic structure. The upper layers add details, noise, and
illumination changes. The quantitative evaluation and
comparison to at-the-time state-of-the-art is in Table 5.

Conditional synthesis by example. Generating new sam-
ples as variations of the example input is an easier ap-
proach. The encoder generates latent vectors µ, σ for each
hierarchy level. The synthesis is equal to the random
sampling with the condition to use encoded latent vec-
tors with small variations or linearly interpolate between
encoded vectors of two input examples. The decoder gen-
erates new variations of modified examples from sampled
z1, . . . , z4.

7.4 Conclusion
We designed an architecture for a generative neural net-
work and a training strategy enforcing the hierarchical de-
composition of real-world textures with details of various
frequencies and to increase the reconstruction quality of
VAE. We focused our designed network to synthesize tex-
ture because of its structural variability and challenging
optimization. To confirm our claim, we generated several
thousand samples and verified the quality of reconstruc-
tion and synthesis empirically and statistically by stan-
dard metrics used for measuring the quality of generated
images and compared them to the state-of-the-art models.
Our model reached comparable results and beat models
designed for generating textures of lower resolution. How-
ever, the visual evaluation found the synthesized textures
still lacking the photographic quality of real-world tex-
ture. In general GANs are more suitable for generating
content thanks to the adversarial training that helps them
optimize to learn various scales of details. On the other
hand, using the hierarchical design allows the VAE model
to decompose the texture into layers of structural details
and noise.

8. Support for diagnosis of Breast cancer

Our first contribution to breast cancer diagnosis is a method
with visually interpretable predictions to support the di-
agnosis. We use SiamNet to determine the similarity be-
tween pairs of tissue samples. We base our approach on
retrieving the most similar atlas tissue samples to rec-
ommend the possible cancer type (class) according to the
annotations. The visualized examples should draw the at-
tention of the investigating histopathologist to the struc-
ture of a possible tumor, which occurs in both the pre-
dicted and in the evidence tissue slice.

We modify architecture of the Araujo et al. [4]. Our mod-
ification (Table 6) omits last 3 fully connected layers and
instead used one with 512 neurons activated by ReLU ac-
tivation function. The output is then used for computing
the distance. The network input are 3 channeled color im-
age pairs of resolution 512 × 512. We are using a single-
step stride between convolutions and two-step stride in
Max-Pooling to extract the most informative activations.

This research requires a large dataset of images with rele-
vant information. According to the nature of histological
image data, the rotation is irrelevant so we apply rotations
by 3× 90· and mirroring in both directions. To unify the
illumination and staining variations, we apply standard
staining normalization by Macenko et al. [24]. The ra-
dius of a cell nuclei ranges from 3 to 11 pixels, therefore
we sample patches of size 128× 128 pixels to preserve the
sufficient number of nuclei. After all augmentations we
generate 280 new samples from each image making to-
gether 28000 samples per class. These are filtered and
reduced of samples with diagnostically irrelevant regions
- background, glass, fat, . . .

Visual classes. The two cut-out samples even though clas-
sified as the same tumor type can be different due to tis-
sue structures. This can cause issues during training as
it would be difficult for network to map visually different
images to one spatial cluster in latent space. Therefore
we introduce Visual classes. To separate visually simi-
lar and different samples we experimented with RGB and
HSV color models and Local Binary Patterns to extract
a histogram as global descriptor of a sample. Then the
samples with correlation greater than 0.75 are considered
strongly similar and greater than 0.6 are weakly similar.
The network then receives input mini-batches sampled
with this constraints.

8.1 Classification strategies
After determining the similarity between analyzed and
atlas samples it is required to state the probable tumor
class. We experiment with 5 strategies based on retrieval
techniques and atlas ordering.

1. 40 Sample Atlas predictions The baseline ap-
proach is generating the 40 image atlas samples that



8 Hudec, L.: Texture analysis and synthesis using neural networks

Table 5: Fréchet Inception Distance (FID) - Synthesis task
Texture Zhao[33] SGAN[14] nSTGAN[34] TexGAN[32] Ours
bricks 315.5 286.17 199.25 460 270.59
camo 377.27 349.63 294.81 367.42 278.13
tiles 412.83 187.39 491.15 415.62 489.97
wall 265.13 363.7 279.37 402.13 403.43

Table 6: Architecture of branch networks used in
Siamese network.

Layer Dimensions
Kernel

size
Receptive
area(µm)

Input 512× 512× 3 0.4× 0.4
Conv 510× 510× 16 3× 3 1× 1
MaxPool 170× 170× 16 3× 3 2× 2
Conv 168× 168× 32 3× 3 4.6× 4.6
MaxPool 84× 84× 32 2× 2 5.9× 5.9
Conv 84× 84× 64 3× 3 11× 11
MaxPool 42× 42× 64 2× 2 13× 13
Conv 42× 42× 64 3× 3 24× 24
MaxPool 14× 14× 64 3× 3 34× 34
Conv 12× 12× 32 3× 3 63.8× 63.8
MaxPool 12× 12× 32 3× 3 94.1× 94.1
FC+ReLU 512 215× 215

all further approaches use for classification. The
threshold (Equation 4) from ROC for binary clas-
sification determines the level of similarity. After
the thresholding, the remaining atlas samples are
ordered to show the most possible classes based on
the similarity of patches.

threshold =
√

(1− recall)2 + (1− specificity)2

(4)

2. 3 closest samples We can classify the sample ac-
cording to 3 the most similar pairs. The class is
determined by the threshold from ROC curve and
according to the class of the remaining sample.

3. 3 closest samples with majority vote Inspired
by [4], the selection of K the most similar samples,
but the class is determined by majority vote. If the
voting is not successful, then the class is assigned
based on priority queue Invasive carcinoma, In Situ
carcinoma, benign tumor, normal tissue or by the
class of the very strongly similar sample.

4. Continuous classification A gradual categoriza-
tion based on a medical diagnosis perspective. The
binary classification of the malignancy then specific
subcategories. All predictions are sorted by most
similar slices and the superclass with five samples
in this series determines the tumor class.

5. Mean distance The similarity is a distance of fea-
ture vectors, and the lower distance the more simi-
lar are the samples. However, there may be outliers
and some specific samples may be very similar even
though the samples are from different tumor types.
The class is determined according to the category
of similar samples with the smallest mean and stan-
dard deviation of the distances.

8.2 Discussion

Table 7: The comparison to the methods for clas-
sification of Breast Cancer.

Accuracy
AlexNet[9] 0.53
DenseNet-18[9] 0.71
DenseNet-121[9] 0.79
DenseNet-161[9] 0.98
Chennamsetty2018[9] 0.87
Spanhol2016[30] 0.86
Rakhlin2018[27] v0.938
Araújo2017[4] 0.776
Alom2019[3] 0.98
Our Method 0.652

Our method reaches average results that can be caused by
confusing pairs with insufficient visibly similar structures.
The color histograms are global descriptors carrying too
general information. Also, the LBP, even though a strong
local descriptor, does not describe a complex and hetero-
geneous texture with large patterns sufficiently. However,
the results of both methods are sufficient to prove the
concept of explanation and interpretation of the reasoning
behind the classification for histopathology processes and
provide a robust visual tool recommending suspicious tis-
sue samples for further analysis. After consultation with
the histopathologist, they considered the slices too small,
containing very little information about the potential tu-
mor. But that is a general problem with datasets of cut-
out samples.

We can conclude that the classification of malignancy is
more successful and more stable than more specific clas-
sification into four cancer classes provided from dataset.
The results demonstrate the positive impact of filtering
the visual classes and training only the visually simi-
lar/dissimilar pairs without confusing the network. The
main contribution of our research is an interpretable and
self-explainable similarity approach using a Siamese con-
volutional neural network for classification. Our classifi-
cation method is transparent in interpreting the reason
for classifying the sample by visualizing similar samples
with structures significant for the final classification and
diagnosis and still utilizing the strengths of deep learning.

9. Conclusions
This paper focuses on processing texture as a basic visual
surface characteristic of objects and related locations. We
applied modern deep learning solutions to selected topics:
texture similarity evaluation; texture synthesis; analysis
of histology images.

We trained a Siamese Network to classify texture accord-
ing to their similarity that was determined by the dis-
tance between their extracted representative feature vec-
tors. Our experiments proved differences in optimizing
networks by different distance metrics. The achieved re-
sults showed a significant downfall in classification accu-
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racy with Mahalanobis and Bray-Curtis distances com-
pared to the network trained with Euclidean distance.

We designed a hierarchical generative model for texture
synthesis from random input and modifying the example
inputs. We based the architecture on Variational Auto-
Encoders and tried to increase the quality of generated
output often suffering from blurriness. Our training ap-
proach forced the network to decompose the texture de-
tails to layers according to their frequency. This design
contributed to the quality of reconstructed inputs and al-
lowed the synthesis of new samples, even though the qual-
ity was far from real-world texture.

Furthermore, we applied the gained knowledge of texture
analysis and determining similarity between patches into
domain of histology and microscopy images. We devel-
oped an approach that compares the slices of tissue and
determines the type of tissue and cell structures into be-
nign and malignant tumors by comparing to atlas sam-
ples. The post-research consultations with medics marked
the approach as interesting, however, using such small
patches would not give them enough information for plau-
sible diagnosis. The consultations with medics provided
us precious information, that the classification of cancer
is more reliable from larger regions and also that larger
regions are required to find cell structures responsible for
creation of tumors.

The future work may bring improvements with classifi-
cation precision and quality of generated images. The
approach for texture similarity may be used for discrimi-
nator in GAN networks. The classification of breast can-
cer benefits from larger regions with visible architectural
structure, and the results can be improved with large
dataset with equal distribution of all classes.
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