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Abstract
This work is based on my PhD thesis, which continues
with studying of grammar and automata systems. First
of all, it deals with regularly controlled CD grammar
systems with phrase-structure grammars as components.
Into these systems, three new derivation restrictions are
placed and their effect on the generative power of these
systems are investigated. Thereafter, the thesis defines
two automata counterparts of canonical multi-generative
nonterminal and rule synchronized grammar systems, gen-
erating vectors of strings, and it shows that these inves-
tigated systems are equivalent. Furthermore, the thesis
generalizes definitions of these systems and establishes
fundamental hierarchy of n-languages (sets of n-tuples
of strings). In relation with these mentioned systems,
automaton-grammar translating systems based upon fi-
nite automaton and context-free grammar are introduced
and investigated as a mechanism for direct translating.
At the end, in the thesis introduced automata systems
are used as the core of parse-method based upon n-path-
restricted tree-controlled grammars.

Categories and Subject Descriptors
F.4.3 [Formal Languages]: classes defined by grammars
or automata, operation on languages

Keywords
grammar, automaton, grammar system, automata sys-
tem, transducer, parsing

1. Introduction
In the seventh century before Christ, Egyptians believed
they are the oldest nation in the world. The former king,
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Psantek I., wanted to confirm this assumption. The con-
firmation was based on the idea that children, who cannot
learn to speak from adults, will use innate human lan-
guage. That language was supposed to be Egyptian. For
this purpose, Psantek I. took two children from a poor
family and let them to grow up in care of a shepherd
in an environment, where nobody was allowed to speak
with these children. Although the test ultimately failed,
it brings us testimony that already in old Egypt, peo-
ple somehow felt the importance of languages (the whole
story you can see in The story of psychology by Morton
Hunt).

In 1921, Ludwig Wittgenstein published a philosophical
work (Logisch-philosophische Abhandlung) claiming The
limits of my language mean the limits of my world. In the
computer science, this claim is doubly true. Languages
are a way how people express information and ideas in
terms of computer science or information technology. In
essence, any task or problem, which a computer scientist
is able to describe, can be described by a language. The
language represents a problem and all sentences belonging
into this language are its solutions.

Fact about the limitation by languages led to the birth
of a new research area referred to as theory of formal
languages studying languages from a mathematical point
of view. The main initiator was linguist Noam Chomsky,
who, in the late fifties, introduced hierarchy of formal lan-
guages given by four types of language generators. By this
work, Noam Chomsky inspired many mathematicians and
computer scientists so they began to extend this funda-
mental hierarchy by adding new models for language def-
inition. Because the theory of formal languages examines
the languages from the precise mathematical viewpoint,
its results are significant for many areas in information
technology. Models, which are studied by the theory, are
used in compilers, mathematical linguistics, bioinformat-
ics, especially genetics and simulation of natural biology
processes, artificial intelligence, computer graphics, com-
puter networks, and others.

The classical formal language theory uses three approaches
to define formal languages: grammatical approach, where
the languages are generated by grammars, automata ap-
proach, where the languages are recognized by automata,
and algebraic approach, where the languages are defined
by some language operations. To be more precise, in the
grammatical approach, a grammar generates its language
by application of derivation steps replacing sequences of



8 Čermák, M.: Formal Systems Based upon Automata and Grammars

symbols by other sequences according to its prescribed
rules. The symbols can be terminal or nonterminal, and
the sequences of these symbols are called strings. In a
single derivation step, the grammar, by application of its
rule, replaces a part of string by some other string. Any
string, which contains no nonterminal symbol and which
can be generated from a start nonterminal by application
of a sequence of derivation steps, belongs to the language
of the grammar. The language of the grammar is repre-
sented by the set of such generated strings.

While a grammar generates language, an automaton rep-
resents formal algorithm by which the automaton can
recognize correctly made sequences of symbols belonging
into the language the automaton defines. More specifi-
cally, an automaton has string written on its input tape.
By application of prescribed rules, it processes the string
symbol by symbol and changes its current state to de-
termine whether the string belongs to the language rep-
resented by the automaton. If so, the string is accepted
by the automaton. The set of all strings accepted by the
automaton is the language that the automaton defines.

All models, investigated in the theory of formal languages,
are designed to reflect needs of given information techno-
logy. Today, when a task distribution, parallel and co-
operation process are extremely popular, the main atten-
tion is focused on controlled models and systems of mo-
dels. The necessity of efficient data processing, computer
networks, parallel architectures, parallel processing, and
nature motivated computing devices justify studying of
these approaches in terms of the theory of formal models,
where the mechanisms representing these approaches are
called systems of formal models.

Unlike the classic formal languages and automata theory,
which studies models accepting or generating language by
one automaton or grammar, a modern computer science
aims to distribute this computation. The main motiva-
tion for investigation of systems lies in a possibility to dis-
tribute a task into several smaller tasks, which are easier
to solve and easier to describe. These tasks can be solved
sequentially or in parallel, and usually, due a communica-
tion, the cooperating models are more efficient than the
models themselves.

The main role in the theory of formal systems is played by
cooperation protocols and used formal models. The the-
sis continues with study of these modern approaches and
brings new, or generalized, formal mechanisms and re-
sults into the theory. More specifically, the thesis mainly
deals with systems of automata and grammars and stud-
ies their properties. At first, it continues with study-
ing of sequential grammar systems, known as cooperating
distributed grammar systems (shortly CD grammar sys-
tems). These were introduced in the late eighties as a
model for blackboard problem solving. The main idea
standing behind the CD grammar systems is in a co-
operation of well-known simple grammars working on a
shared string under a cooperation protocol. Unfortu-
nately, the increased efficiency, obtained from the coop-
eration, is given by higher degree of ambiguity and non-
determinism, what is unpleasant for a practical purpose.
The thesis introduces several restrictions limiting the am-
biguity or non-determinism, and investigates their effect
on the systems.

The further investigation builds on the work of Roman
Lukáš and Alexander Meduna, who, in 2006, introduced a
new variant of parallel grammar systems named as multi-
generating grammar systems. In contrast with classic
widely studied parallel communicating grammar systems,
where included grammars are used as supporting elements
and the language of a parallel grammar system is gene-
rated by one predetermined grammar, these new systems
take into account strings from all their grammars. The
final strings are obtained from all generated strings by a
string operation. The thesis introduces two versions of au-
tomata counterpart to these grammar systems and proves
their equivalence. Thereafter, the investigated systems
are generalized and a fundamental hierarchy of these sys-
tems is established. Finally, the thesis suggests systems
based on mentioned approaches as a direct translator of
natural languages and parser of languages generated by a
specific type of controlled grammars.

2. Preliminaries
In this paper, we assume the reader is familiar with the
formal language theory (see [30]) and the basic aspects of
computational linguistics (see [33]).

For a set, Q, |Q| denotes the cardinality of Q. Let K ⊂ N0

is a final set. Then, max(K) = k, where k ∈ K and for
all h ∈ K, k ≥ h; and min(K) = l, where l ∈ K and for
all h ∈ K, l ≤ h. Furthermore, let (X,≥) is an ordered
set and A ⊆ X. We say that x ∈ X is an upper and
lower bound of A, if for all a ∈ A, a ≤ x and x ≤ a,
respectively. The least upper bound is called supremum,
written as sup(A). Conversely, the greatest lower bound
is known as infimum, denoted inf(A).

For an alphabet, V , V ∗ represents the free monoid gene-
rated by V (under the operation concatenation). The
identity of V ∗ is denoted by ε. Set V + = V ∗ − {ε};
algebraically, V + is thus the free semigroup generated by
V . For every string w ∈ V ∗, |w| denotes the length of

w, (w)R denotes the mirror image of w, and for A ∈ V ,
occur(A,w) denotes the number of occurrences of A in w.
For a, b ∈ Z, function max(a, b) returns the greater value
from a and b.

A finite automaton, FA, is a quintupleM = (Q,Σ, δ, q0, F ),
where Q is a finite set of states; Σ is an alphabet; q0 ∈ Q
is the initial state; δ is a finite set of transition rules of
the form qa → p, where p, q ∈ Q, and a ∈ Σ ∪ {ε}; and
F ⊆ Q is a set of final states. A configuration of M is
any string from QΣ∗. For any configuration qay, where
a ∈ Σ, y ∈ Σ∗, q ∈ Q, and any r = qa→ p ∈ δ, M makes
a move from configuration qay to configuration py accord-
ing to r, written as qay ⇒ py[r], or simply qay ⇒ py. ⇒∗
and ⇒+ represent transitive-reflexive and transitive clo-
sure of ⇒, respectively. If w ∈ Σ∗ and q0w ⇒∗ f , where
f ∈ F , then w is accepted by M and q0w ⇒∗ f is an
acceptance of w in M . The language of M is defined as
L(M) = {w| w ∈ Σ∗, q0w ⇒∗ f is an acceptance of w}.

A partially blind k-counter automaton, k-PBCA, is fi-
nite automaton M = (Q,Σ, δ, q0, F ) with k integers v =
(v1, . . . , vk) in Nk

0 as an additional storage. Transition
rules in δ are of the form pa → qt, where p, q ∈ Q,
a ∈ Σ ∪ {ε}, and t ∈ Zk. As a configuration of k-
PBCA we understand any string from QΣ∗Nk

0 . Let χ1 =
paw(v1, . . . , vk) and χ2 = qw(v′1, . . . , v

′
k) be two config-

urations of M and r = pa → q(t1, . . . , tk) ∈ δ, where
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(v1 + t1, . . . , vk + tk) = (v′1, . . . , v
′
k). Then, M makes a

move from configuration χ1 to χ2 according to r, writ-
ten as χ1 ⇒ χ2[r], or simply χ1 ⇒ χ2. ⇒∗ and ⇒+

represent transitive-reflexive and transitive closure of ⇒,
respectively. The language of M is defined as L(M) =
{w| w ∈ Σ∗, q0w(0, . . . , 0)⇒∗ f(0, . . . , 0), f ∈ F}.

A pushdown automaton, PDA, is a septupleM = (Q,Σ,Γ,
δ, q0, Z0, F ), where Q is a finite set of states; Σ is an alpha-
bet; q0 ∈ Q is the initial state, Γ is a pushdown alphabet;
δ is a finite set of transition rules of the form Zqa→ γp,
where p, q ∈ Q, Z ∈ Γ, and a ∈ Σ∪{ε}; γ ∈ Γ∗; Z0 ∈ Γ is
the initial pushdown symbol; and F ⊆ Q is a set of final
states. A configuration of M is any string from Γ∗QΣ∗.
For any configuration xAqay, where x ∈ Γ∗, y ∈ Σ∗,
q ∈ Q, and any r = Aqa→ γp ∈ δ, M makes a move from
configuration xAqay to configuration xγpy according to
r, written as xAqay ⇒ xγpy[r], or simply xAqay ⇒ xγpy.
⇒∗ and ⇒+ represent transitive-reflexive and transitive
closure of ⇒, respectively. If w ∈ Σ∗ and Z0q0w ⇒∗ f ,
where f ∈ F , then w is accepted by M and Z0q0w ⇒∗ f
is an acceptance of w in M . The language of M is defined
as L(M) = {w| w ∈ Σ∗, Z0q0w ⇒∗ f is an acceptance of
w}.

A k-turn PDA is a PDA in which the length of the push-
down tape alternatively increases and decreases at most
k-times during any sweep of the pushdown automaton.

A context-free grammar, CFG, is quadruple G = (N,T, P,
S), where N and T are disjoint alphabets of nonterminal
and terminal symbols, respectively; S ∈ N is the start
symbol of G; and P is a finite set of grammar rules of
the form A → α, where A ∈ N , and α ∈ (N ∪ T )∗.
Furthermore, if α ∈ T ∗NT ∗, we say that the grammar is
linear, LNG for short, and if α ∈ TN , we say that the
grammar is right-linear, RLNG for short. A sentential
form of G is any string from (N∪T )∗. Let u, v ∈ (N∪T )∗

and r = A → α ∈ P . Then, G makes a derivation step
from u to v according to r, written as uAv ⇒ uαv[r], or
simply uAv ⇒ uαv. Let ⇒∗ and ⇒+ denote transitive-
reflexive and transitive closure of ⇒. The language of G
is defined as L(G) = {w| S ⇒∗ w,w ∈ T ∗}.

A phrase-structure grammar is a quadruple G = (N,T, S,
P ), where N and T are alphabets such that N ∩ T = ∅,
S ∈ N , and P is a finite set of productions of the form
α→ β, where α ∈ N+ and β ∈ (N ∪ T )∗. If α→ β ∈ P ,
u = x0αx1, and v = x0βx1, where x0, x1 ∈ V ∗, then
u ⇒ v [α → β] in G or, simply, u ⇒ v. Let ⇒+ and
⇒∗ denote the transitive closure of ⇒ and the transitive-
reflexive closure of ⇒, respectively. The language of G is
denoted by L(G) and defined as L(G) = {w ∈ T ∗| S ⇒∗
w}.

A programmed grammar (see [18]) is a septupleG = (N,T,
S, P,Λ, σ, φ), where

• N and T are alphabets such that N ∩ T = ∅,
• S ∈ N ,

• P is a finite set of productions of the form A → β,
where A ∈ N and Λ is a finite set of labels for the
productions in P .

• Λ can be interpreted as a function which outputs a
production when being given a label,

• σ and φ are functions from Λ into the 2Λ.

For (x, r1), (y, r2) ∈ (N ∪ T )∗ × Λ and Λ(r1) = (α→ β),
we write (x, r1)⇒ (y, r2) iff either x = x1αx2, y = x1βx2

and r2 ∈ σ(r1), or x = y, and rule α→ β is not applicable
to x, and r2 ∈ φ(r1).

The language of G is denoted by L(G) and defined as
L(G) = {w| w ∈ T ∗, (S, r1) ⇒∗ (w, r2), for some r1, r2 ∈
Λ}. Let L (P, ac) denote the class of languages generated
by programmed grammars. If φ(r) = ∅, for each r ∈ Λ,
we are led to the class L (P).

Let G be a programmed grammar. For a derivation D :
S= w1 ⇒ w2 ⇒ . . . ⇒ wn = w, w ∈ T ∗, of G, ind(D,G)
= max({occur(wi, N)| 1 ≤ i ≤ n}), and for w ∈ T ∗,
ind(w,G) = min({ind(D,G)| D is a derivation of w in
G}). The index of G is ind(G) = sup({ind(w,G)| w ∈
L(G)}). For a language L in the class L (P ) generated by
programmed grammars, ind(L) = inf({ind(G)| L(G) =
L}. For the class L (P ), Ln(P ) = {L| L ∈ L (P ) and
ind(L) ≤ n, for n ≥ 1} (see [18]).

A matrix grammar, MAT, is a pair H = (G,C), where
G = (N,T, P, S) is a context-free grammar and C ⊂ P ∗

is a finite set of strings denoted as matrices. A senten-
tial form of H is any string from (N ∪ T )∗. Let u, v
be two sentential forms. Then, we say that H makes a
derivation step from u to v according to r, written as
u ⇒ v[m], or simply u ⇒ v, if m = p1 . . . pm ∈ C
and there are v0, . . . , vm, where v0 = u, vm = v, and
v0 ⇒ v1[p1] ⇒ . . . ⇒ vm[pm] in G. Let ⇒∗ and ⇒+ de-
note transitive-reflexive and transitive closure of ⇒. The
language of H is defined as L(H) = {w| S ⇒ w1[m1] ⇒
. . . ⇒ wn[mn], wn = w,m1, . . . ,mn ∈ C,w ∈ T ∗, n ≥ 0}.
The class of languages generated by matrix grammars is
denoted by L (MAT).

The classes of regular languages, linear languages, context-
free languages, context-sensitive languages, and recursively
enumerable languages are denoted by REG, LIN, CF,
CS, and RE, respectively.

A canonical n-generative nonterminal-synchronized gram-
mar system, abbreviated by n-CGN, is an (n+1)-tuple
Γ = (G1, . . . , Gn, Q), where Gi = (Ni, Ti, Pi, Si) is a
context-free grammar for each i = 1, . . . , n and Q is finite
set of n-tuples of the form (A1, . . . , An), where Ai ∈ Ni

for all i = 1, . . . , n. A sentential n-form of n-CGN is an
n-tuple of the form χ = (x1, . . . , xn), where xi ∈ (Ni ∪
Ti)
∗ for all i = 1, . . . , n. Let n-forms χ = (u1A1v1, . . . ,

unAnvn) and χ′ = (u1x1v1, . . . , unxnvn) be two senten-
tial forms, where Ai ∈ Ni, ui ∈ T ∗ and vi, xi ∈ (Ni ∪Ti)

∗

for all i = 1, . . . , n. Let Ai → xi for all i = 1, . . . , n and
(A1, . . . , An) ∈ Q. Then χ⇒ χ′ and ⇒∗ and ⇒+ are its
transitive-reflexive and transitive closure, respectively.

A canonical n-generative rule-synchronized grammar sys-
tem (n-CGR) is an (n+1)-tuple Γ = (G1, . . . , Gn, Q),
where Gi = (Ni, Ti, Pi, Si) is a context-free grammar for
each i = 1, . . . , n and Q is finite set of n-tuples of the
form (r1, . . . , rn), where ri ∈ Pi for all i = 1, . . . , n. A
sentential n-form of n-CGR is an n-tuple of the form
χ = (x1, . . . , xn), where xi ∈ (Ni ∪ Ti)

∗ for all i =
1, . . . , n. Let n-forms χ = (u1A1v1, . . . , unAnvn) and
χ′ = (u1x1v1, . . . , unxnvn) be two sentential forms, where
Ai ∈ Ni, ui ∈ T ∗ and vi, xi ∈ (Ni ∪ Ti)

∗ for all i =
1, . . . , n. Let ri : Ai → xi ∈ Pi for all i = 1, . . . , n and
(r1, . . . , rn) ∈ Q. Then χ ⇒ χ′ and ⇒∗ and ⇒+ are its
transitive-reflexive and transitive closure, respectively.
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3. New Definitions and Selected Results
3.1 Restrictions on CD Grammar Systems
Formal language theory has investigated various left re-
strictions placed on derivations in grammars working in
a context-free way. In ordinary context-free grammars,
these restrictions have no effect on the generative power.
In terms of regulated context-free grammars, the formal
language theory has introduced a broad variety of leftmost
derivation restrictions, many of which change their gene-
rative power (see [2, 4, 15, 16, 17, 19, 20, 22, 26, 27, 28,
29]). In terms of grammars working in a context-sensitive
way, significantly fewer left derivation restrictions have
been discussed in the language theory. Indirectly, this
theory has placed some restrictions on the productions so
the resulting grammars make only derivations in a left way
(see [2, 4]). This theory also directly restricted derivations
in the strictly leftmost way so the rewritten symbols are
preceded only by terminals in the sentential form during
every derivation step (see [26]). In essence, all these re-
strictions result in decreasing the generative power to the
power of context-free grammars (see page 198 in [36]).
This section generalizes the discussion of this topic by
investigating regularly controlled cooperating distributed
grammar systems (see Chapter 4 in [36]) whose compo-
nents are phrase-structure grammars restricted in some
new ways.

Now, we define the restrictions on derivations in phrase-
structure grammars. In the following, we consider V
as the total alphabet of G = (N,T, P, S), i.e. V =
N ∪ T . Derivation-restriction of type I: Let l ∈ N and
let G = (N,T, P, S) be a phrase-structure grammar. If
there is α → β ∈ P , u = x0αx1, and v = x0βx1,
where x0 ∈ T ∗N∗, x1 ∈ V ∗, and occur(x0α,N) ≤ l, then
u l�⇒ v [α→ β] in G, or simply u l�⇒ v.

The k-fold product of l�⇒, where k ≥ 0, is denoted by

l�⇒k. The reflexive-transitive closure and transitive clo-
sure of l�⇒ are denoted by l�⇒∗ and l�⇒+, respectively.

Derivation-restrictions of type II and III Let m,h ∈ N.
W (m) denotes the set of all strings x ∈ V ∗ satisfying 1
given next. W (m,h) denotes the set of all strings x ∈ V ∗
satisfying 1 and 2.

1. x ∈ (T ∗N∗)mT ∗;

2. (y ∈ sub(x) and |y| > h) implies alph(y) ∩ T 6= ∅.

Let u ∈ V ∗N+V ∗, v ∈ V ∗, and u ⇒ v. Then, u h
m◦⇒ v

in G, if u, v ∈ W (m,h); and if u, v ∈ W (m), u m◦⇒ v in
G.

The k-fold product of h
m◦⇒ and m◦⇒ are denoted by

h
m◦⇒k and m◦⇒k, respectively, where k ≥ 0. The reflexive-
transitive closure and transitive closure of h

m◦⇒ are de-
noted by h

m◦⇒∗ and h
m◦⇒+ , respectively; and the reflexive-

transitive closure and transitive closure of h
m◦⇒ and m◦⇒

are denoted by m◦⇒∗ and m◦⇒+, respectively.

Convention: Let Γ = (N,T, S, P1, . . . , Pn) be a CD gram-
mar system with phrase-structure grammars as its com-
ponents and V = N ∪ T be the total alphabet of Γ. Fur-
thermore, let u ∈ V ∗N+V ∗, v ∈ V ∗, k ≥ 0. Then,
we write u l�⇒k

Pi
v, u h

m◦⇒k
Pi

v, and u m◦⇒k
Pi

v to

denote that u l�⇒k v, u h
m◦⇒k v, and u m◦⇒k v, re-

spectively, was performed by Pi. Analogously, we write

u l�⇒∗Pi
v, u h

m◦⇒∗Pi
v, u m◦⇒∗Pi

v, u l�⇒+
Pi
v, u h

m◦⇒+
Pi
v,

u m◦⇒+
Pi
v, u h

m◦⇒t
Pi
v, and u m◦⇒t

Pi
v.

Let Γ = (N,T, S, P1, . . . , Pn) be a CD grammar system
with phrase-structure grammars as its component and C
be a control language. Then, lL

C(Γ) = {w ∈ T ∗| S l�⇒t
Pi1

w1 l�⇒t
Pi2

. . . l�⇒t
Pip

wp = w, p ≥ 1, 1 ≤ ij ≤ n, 1 ≤ j ≤
p, i1i2 . . . ip ∈ C},NLC(Γ,m, h) = {w ∈ T ∗| S h

m◦⇒t
Pi1

w1
h
m◦⇒t

Pi2
. . . h

m◦⇒t
Pip

wp = w, p ≥ 1, 1 ≤ ij ≤ n, 1 ≤
j ≤ p, i1i2 . . . ip ∈ C},NLC(Γ,m) = {w ∈ T ∗| S m◦⇒t

Pi1

w1 m◦⇒t
Pi2

. . . m◦⇒t
Pip

wp = w, p ≥ 1, 1 ≤ ij ≤ n, 1 ≤
j ≤ p, i1i2 . . . ip ∈ C}.

Let l,m, h ∈ N and let Γ = (N,T, S, P1, . . . , Pn) be a CD
grammar system with phrase-structure grammars. We
define the following classes of languages.

L (lCDREG) = {lLC(Γ)| C ∈ REG}

L (NCDREG(m,h)) = {NLC(Γ,m, h)| C ∈ REG}

L (NCDREG(m)) = {NLC(Γ,m)| C ∈ REG}

For these classes, the following theorems are established.

Theorem. Let l ∈ N. Then, CF = L (lCDREG).

Theorem. RE = L (NCDREG(1)).

Theorem. Lm(P) = L (NCDREG(m,h)), for any m ≥
1 and h ≥ 1.

3.2 Parallel Systems of Formal Models
In the thesis, we introduce n-accepting restricted push-
down automata systems representing automata counter-
part of multi-generative grammar systems (see Section 2).
First, we define n-accepting state-restricted pushdown au-
tomata systems. By using prescribed n-state sequences,
the restrictions of these systems determines which of the
components perform a move and which of them do not.
Second, we define n-accepting move-restricted pushdown
automata systems, where the restriction precisely deter-
mines which transition rule can be used in each of the n
components. Both of these systems define sets of n-tuples
of strings (n-languages).

After that, we generalize the theory of n-languages and
discuss hybrid n-accepting move-restricted automata sys-
tems and hybrid canonical rule-synchronized n-generative
grammar systems, where components with different ac-
cepting and generative power can be used in one automata
and grammar system, respectively. More specifically, we
investigate grammar systems, which combine right-linear
grammars, linear grammars, and context-free grammars;
and automata systems, which combine finite automata,
1-turn pushdown automata, and pushdown automata in
one instance.

A hybrid canonical rule-synchronized n-generative gram-
mar system, shortly HCGR(t1,...,tn), is an n + 1-tuple
Γ = (G1, . . . , Gn, Q), where

• Gi = (Ni, Ti, Pi, Si) is a right-linear, linear, or con-
text-free grammar for every i = 1, . . . , n,
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• Q is a finite set of n-tuples of the form (r1, . . . , rn),
where ri ∈ Pi for every i = 1, . . . , n, and

• for all i = 1, . . . , n, ti ∈ {RLNG,LNG,CFG} de-
notes type of ith component.

A sentential n-form of HCGR(t1,...,tn) is an n-tuple χ =
(x1, . . . , xn), where xi ∈ (Ni ∪ Ti)

∗ for all i = 1, . . . , n.

Consider sentential n-forms, χ = (u1A1v1, . . . , unAnvn)
and χ′ = (u1x1v1, . . . , unxnvn) with

• Ai ∈ Ni,

• ui ∈ T ∗,

• vi, xi ∈ (N ∪ T )∗,

• ri = Ai → xi ∈ Pi, for all i = 1, . . . , n, and

• (r1, . . . , rn) ∈ Q.

Then, χ⇒ χ′, and⇒∗ and⇒+ are its reflexive-transitive
and transitive closure, respectively.

The n-language of Γ is defined as n-L(Γ) = {(w1, . . . , wn)|
(S1, . . . , Sn)⇒∗ (w1, . . . , wn), wi ∈ T ∗i , for all 1 ≤ i ≤ n}.

A hybrid n-accepting move-restricted automata system,
denoted HMAS(t1,...,tn), is defined as an n+ 1-tuple ϑ =
(M1 . . . ,Mn,Ψ) with Mi as a finite or (1-turn) pushdown
automaton for all i = 1, . . . , n, and with Ψ as a finite set
of n-tuples of the form (r1, . . . , rn), where for every j =
1, . . . , n, rj ∈ δj in Mj . Furthermore, for all i = 1, . . . , n,
ti ∈ {FA, 1-turn PDA, PDA} indicates the type of ith
automaton.

An n-configuration is defined as an n-tuple χ = (x1, . . . ,
xn), where for all i = 1, . . . , n, xi is a configuration of
Mi. Let χ = (x1, . . . , xn) and χ′ = (x′1, . . . , x

′
n) be two

n-configurations, where for all i = 1, . . . , n, xi ⇒ x′i [ri]
in Mi, and (r1, . . . , rn) ∈ Ψ, then ϑ makes computation
steps from n-configuration χ to n-configuration χ′, de-
noted χ ⇒ χ′, and in the standard way, ⇒∗ and ⇒+

denote the reflexive-transitive and the transitive closure
of ⇒, respectively.

Let χ0 = (x1ω1, . . . , xnωn) be the start and χf = (q1, . . . ,

qn) be a final n-configuration of HMAS(t1...,tn), where for
all i = 1, . . . , n, ωi is the input string of Mi and qi is
state of Mi. The n-language of HMAS(t1,...,tn) is defined
as n-L(ϑ) = {(ω1, . . . , ωn)| χ0 ⇒∗ χf and for every i =
1, . . . , n, Mi accepts}.

In a special case, where all components are of type X, we
write nX instead of (X, . . . ,X). If there is no attention on
the number and type of components, we write HMAS and
HCGR rather than HMAS(t1,...,tn) and HCGR(t1,...,tn),
respectively.

L (HMAS(t1,...,tn)) is the class of n-languages accepted

by HMAS(t1,...,tn), and L (HCGR(t1,...,tn)) is the class of

n-languages generated by HCGR(t1,...,tn).

The basic hierarchy of such systems is given by Figure 1.

L (HMASnFA)

L (HMAS(FA,...,FA,PDA))

L (HMAS(FA,...,FA,PDA,PDA))

L (HMASnPDA)

L (HMAS(FA,...,FA,1-turn PDA,1-turn PDA))

L (HCGRnRLNG)

L (HCGRnLNG)

L (HCGR(RLNG,...,RLNG,CFG))

L (HCGR(RLNG,...,RLNG,CFG,CFG))

Figure 1: Hierarchy of n-languages for n ≥ 2

3.3 Rule-Restricted Transducers
In formal language theory, there exist two basic trans-
lation-method categories. The first category contains in-
terprets and compilers, which first analyse an input string
in the source language and, after that, they generate a cor-
responding output string in the target language (see [1],
[32], [35], [23], or [37]). The second category is composed
of language-translation systems or, more briefly, transduc-
ers. Frequently, these trasducers consist of several compo-
nents, including various automata and grammars, some of
which read their input strings while others produce their
output strings (see [3], [21], [34], and [38]).

Although transducers represent language-translation de-
vices, language theory often views them as language-de-
fining devices and investigates the language family re-
sulting from them. In essence, it studies their accept-
ing power consisting in determining the language families
accepted by the transducer components that read their
input strings. Alternatively, it establishes their genera-
tive power that determines the language family generated
by the components that produce their strings. The the-
sis contributes to this vivid investigation trend in formal
language theory.

In this section, we introduce three new variants of trans-
ducer, referred to as rule-restricted transducer, based upon
a finite automaton and a context-free grammar. In ad-
dition, a restriction set controls the rules which can be
simultaneously used by the automaton and by the gram-
mar.

An rule-restricted transducer, RT for short, is a triplet
Γ = (M,G,Ψ), where M = (Q,Σ, δ, q0, F ) is a finite au-
tomaton, G = (N,T, P, S) is a context-free grammar, and
Ψ is a finite set of pairs of the form (r1, r2), where r1 and
r2 are rules from δ and P , respectively.

A 2-configuration of RT is a pair χ = (x, y), where x ∈
QΣ∗ and y ∈ (N ∪ T )∗. Consider two 2-configurations,
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χ = (pav1, uAv2) and χ′ = (qv1, uxv2) with A ∈ N ,
u, v2, x ∈ (N ∪ T )∗, v1 ∈ Σ∗, a ∈ Σ ∪ {ε}, and p, q ∈ Q.
If pav1 ⇒ qv1[r1] in M , uAv2 ⇒ uxv2[r2] in G, and
(r1, r2) ∈ Ψ, then Γ makes a computation step from χ′

to χ′, written as χ ⇒ χ′. In the standard way, ⇒∗ and
⇒+ are transitive-reflexive and transitive closure of ⇒,
respectively.

The 2-language of Γ, 2-L(Γ), is 2-L(Γ) = {(w1, w2)| (q0w1,
S)⇒∗ (f, w2), w1 ∈ Σ∗, w2 ∈ T ∗, and f ∈ F}. From the
2-language we can define two languages:

• L(Γ)1 = {w1| (w1, w2) ∈ 2-L(Γ)}, and

• L(Γ)2 = {w2| (w1, w2) ∈ 2-L(Γ)}.

By L (RT), L (RT)1, and L (RT)2, the classes of 2-lan-
guages of RTs, languages accepted by M in RTs, and
languages generated by G in RTs, respectively, are un-
derstood. The generative and accepting power are given
by the following theorems.

Theorem. L (RT)2 = L (MAT).

Theorem. L (RT)1 =
∞⋃

k=1

L (k-PBCA).

Although the investigated system is relatively powerful,
in defiance of weakness of models they are used, non-
deterministic selections of nonterminals to be rewritten
can be relatively problematic from the practical point of
view. Therefore, the effect of a restriction, in the form of
leftmost derivations placed on the grammar in RTs, has
been examined.

Let Γ = (M,G,Ψ) be an RT withM = (Q,Σ, δ, q0, F ) and
G = (N,T, P, S). Furthermore, let χ = (pav1, uAv2) and
χ′ = (qv1, uxv2) be two 2-configurations, where A ∈ N ,
v2, x ∈ (N ∪ T )∗, u ∈ T ∗, v1 ∈ Σ∗, a ∈ Σ ∪ {ε}, and
p, q ∈ Q. Γ makes a computation step from χ to χ′,
written as χ⇒lm χ′, if and only if pav1 ⇒ qv1[r1] in M ,
uAv2 ⇒ uxv2[r2] in G, and (r1, r2) ∈ Ψ. In the standard
way, ⇒∗lm and ⇒+

lm are transitive-reflexive and transitive
closure of ⇒lm, respectively.

The 2-language of Γ with G generating in the leftmost
way, denoted by 2-Llm(Γ), is defined as 2-Llm(Γ) = {(w1,
w2)| (q0w1, S) ⇒∗lm (f, w2), w1 ∈ Σ∗, w2 ∈ T ∗, and
f ∈ F}; we call Γ as leftmost restricted RT; and we
define the languages given from 2-Llm(Γ) as Llm(Γ)1 =
{w1| (w1, w2) ∈ 2-Llm(Γ)} and Llm(Γ)2 = {w2| (w1, w2) ∈
2-Llm(Γ)}. By L (RTlm), L (RTlm)1, and L (RTlm)2,
we understand the classes of 2-languages of leftmost re-
stricted RTs, languages accepted by M in leftmost re-
stricted RTs, and languages generated by G in leftmost
restricted RTs, respectively. The leftmost restriction ef-
fects the generative and accepting power as the following
theorem says.

Theorem. L (RTlm)2 = CF and L (RTlm)1 = CF.

Unfortunately, the price for the leftmost restriction, placed
on derivations in the context-free grammar, is relatively
high and both accepting and generative ability of RT with
the restriction decreases to CF.

In the thesis, RTs have been extended with the possibility
to prefer a rule over another—that is, the restriction sets
contain triplets of rules (instead of pairs of rules), where
the first rule is a rule of FA, the second rule is a main rule
of CFG, and the third rule is an alternative rule of CFG,
which is used only if the main rule is not applicable.

An RT with appearance checking, RTac for short, is a
triplet Γ = (M,G,Ψ), where M = (Q,Σ, δ, q0, F ) is a
finite automaton, G = (N,T, P, S) is a context-free gram-
mar, and Ψ is a finite set of triplets of the form (r1, r2, r3)
such that r1 ∈ δ and r2, r3 ∈ P .

Let χ = (pav1, uAv2) and χ′ = (qv1, uxv2), where A ∈ N ,
v2, x, u ∈ (N ∪ T )∗, v1 ∈ Σ∗, a ∈ Σ ∪ {ε}, and p, q ∈
Q, be two 2-configurations. Γ makes a computation step
from χ to χ′, written as χ ⇒ χ′, if and only if for some
(r1, r2, r3) ∈ Ψ, pav1 ⇒ qv1[r1] in M , and either

• uAv2 ⇒ uxv2[r2] in G, or

• uAv2 ⇒ uxv2[r3] in G and r2 is not applicable on
uAv2 in G.

The 2-language 2-L(Γ) and languages L(Γ)1, L(Γ)2 are
defined in the same way as usual. The classes of lan-
guages defined by the first and the second component in
the system are denoted by L (RTac)1 and L (RTac)2, re-
spectively. The power of the RTs with appearance check-
ing is declared by the following theorem.

Theorem. L (RTac)2 = RE and L (RTac)1 = RE.

4. Thesis Summary and Further Investigation
My thesis discusses and studies formal languages and sys-
tems of formal models. Its main results are published or
submitted in [13, 31, 5, 6, 7, 8, 14, 9, 11, 10, 12]. This
section summaries these results.

The thesis was focused on a study of systems of formal
models which plays important role in the modern infor-
mation technology and computer science. Since the in-
troduction of CD grammar systems, many other systems
were studied and systems of formal models have become
a vivid research area. Aim of the thesis was to further
investigate properties of the systems of formal models to
their better understanding. This research can be divided
into several main parts.

In the first part, we continued in studying of regularly
controlled CD grammar systems, where we used phrase-
structure grammars as components, and introduced three
new restrictions on derivations in these systems. The
first restriction requires that derivation rules could be ap-
plied within the first l nonterminals, for given l ≥ 1. Al-
though phrase-structured grammars define all languages
from RE, regularly controlled CD grammar systems with
phrase-structure grammars as components under such re-
striction generate only context-free languages. One may
ask, how strong the control language must be to leave
the generative power unchanged. Our assumption is that
linear languages are sufficient, but a rigorous proof has
not yet been done. The second restriction allows to have
only limited number of undivided blocks of nonterminals
in each sentential form during any successful derivation.
It has been proven that this restriction has no effect on
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the generative power of these CD grammar systems even
in the case when the restriction allows only one such
block. On the other hand, the restriction limiting the
maximum length and number of the blocks decreases the
generative power of these systems to the classes Lm(P )
representing infinite hierarchy, with respect of m, lying
between the classes of linear and context-sensitive lan-
guages. Notice that m is maximal number of blocks and
CF−Lm(P ) 6= ∅. Question whether the stronger control
language effects the generative power of CD grammar sys-
tems with phrase-structure grammars subject to the third
restriction is still open.

The second part deals with parallel grammar and au-
tomata systems based upon CFGs and PDAs, respec-
tively. More specifically, we introduced two variants of
n-accepting restricted pushdown automata systems, ac-
cepting n-tuples of interdependent strings, as counter-
parts of canonical n-generating nonterminal/rule synchro-
nized grammar systems based upon context-free gram-
mars. Both types of the automata systems consist of n
PDAs, for n ≥ 2, and one restriction-set. In the case of
n-accepting state-restricted automata systems, the restri-
ction-set allows to suspend and resume some automata
during computation in relation to combination of current
states of the PDAs. In the case of n-accepting move-
restricted automata systems, the restriction-set determi-
nes which combination of transition rules used in the com-
mon computation step are permitted. We have proven
that these n-accepting restricted automata systems are
able to accept such n-languages that the canonical n-
generating grammar systems can generate and vice versa.
Furthermore, we have established fundamental hierarchy
of n-languages generating/accepting by these canonical
multi-generating rule synchronized grammar/n-accepting
rule-restricted automata systems with different types of
components. First of all, we have shown that both these
systems are equivalent even if we combine RLNGs with
CFGs in the grammar systems and FAs with PDAs in
the automata systems. After that, we have established
the hierarchy given by Figure 1 (→ and ↔ mean ⊂ and
=, respectively), where it can be seen, inter alia, that
canonical n-generating rule synchronized grammar sys-
tems based upon linear grammars are significantly weaker
than n-accepting move-restricted automata systems, with
two 1-turn PDAs and n− 2 FAs as components.

The second part of the research can be continued by bet-
ter approximation of power of the state/move-restricted
automata systems based upon FAs (especially in relation
to string-interdependences), or by investigation of restart-
ing and/or stateless finite and pushdown automata as the
components of discussed automata systems.

In the last part, we have suggested rule-restricted systems
for processing of linguistically motivated languages. In
this part, we introduced three variants of rule-restricted
translating system based upon a finite automaton and
a context-free grammar. At first, we have proven that
leftmost restriction placed on derivation in the context-
free grammar effects both the generative and accepting
power of such systems. In addition, we introduced a rule-
restricted transducer system with appearance checking,
where the restriction-set Ψ is a set of 3-tuples containing
one rule of the FA and two rules of the CFG. For the
common computation step, the system has to use the first
and second rules of a 3-tuple, if it is possible; otherwise,

it can use the first and third rules from the 3-tuple. This
system is able to recognize and generate any language
from RE. Thereafter, some examples of natural language
translating are given.

The investigation of processing of linguistically motivated
languages continued by generalization of TC grammars
that generate the language under path-based control in-
troduced in [25]. We have considered TC grammars that
generate their languages under n-path control by linear
language which were introduced in [24].

We have demonstrated that for L ∈ n-path-TC under
assumption that L is generated by TC grammar (G,R)
in which G and R are unambiguous and, furthermore, G
is restricted to be LL grammar, there is parsing method
working in polynomial time. This method check whether
or not the paths of the derivation tree t of x ∈ L(G)
belongs to control language R in the time of building
of t. Moreover, when we consider LR parser for L ∈
n-path-TC under assumption that L is generated by
TC grammar (G,R) in which G has bounded ambiguity
(i.e. G is unambiguous or m-ambiguous) and unambigu-
ous language R ∈ LIN, there is also a parsing method
working in polynomial time.

However, the open question is whether there is polynomial
time parsing method: if G is not LL, if G is ambiguous. It
is also of interest to quantify the worst case of the parsing
complexity more precisely.

The open investigation area is represented by the transfor-
mation of n-path TC grammars into some normal forms
based on Chomsky normal form of underlying context-
free grammar which would lead to possibility to use pars-
ing methods based on transformation to Chomsky normal
form.
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