
Domain Analysis of Graphical User Interfaces of
Software Systems

Michaela Bačíková
∗

Department of Computers and Informatics
Faculty of Electrotechnical Engineering and Informatics

Technical University of Košice
Letná 9, 042 00 Košice, Slovakia
michaela.bacikova@tuke.sk

Abstract
Domain analysis (DA) is the first phase of software systen
development. A person who performs DA is called a do-
main analyst. The task of a domain analyst is to collect
information about a domain with the goal of developing
a new software system. Usually, this task is manual and
time-tedious, because the data have to be manually gath-
ered from different sources such as existing documents,
domain experts or existing applications in the domain.

This work is a contribution in the field of domain anal-
ysis of software systems. Our goal is to reduce the time
and effort of domain analysts by supporting an automated
creation of domain models. The goal is achieved through
domain-specific language (DSL) development, thus we also
contribute to the field of DSL development.

We present a unique method for domain analysis of graph-
ical user interfaces (GUIs) of existing software systems.
The output of the method is a formal, platform-inde-
pendent domain model, which is then used to generate a
DSL implementation - classes representing the language
model and a language parser. Since the domain model
is platform-independent, it can be utilized also in other
processes. These processes are described in the work and
their utilization is demonstrated in the experimental part.

We developed a prototype to experimentally verify the
proposed method. Besides the primary feature of creat-
ing DSLs from existing GUIs, the prototype also supports
formalization of the domain model into ontologies. The
prototype was used in three experiments: to experimen-

∗Recommended by thesis supervisor: Prof. Jaroslav
Porubän. Defended at Faculty of Electrotechnical En-
gineering and Informatics, Technical University of Košice
on June 30, 2014.

c© Copyright 2014. All rights reserved. Permission to make digital
or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies show this notice on
the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy other-
wise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from STU Press,
Vazovova 5, 811 07 Bratislava, Slovakia.
Bačíková, M. Domain Analysis of Graphical User Interfaces of Soft-
ware Systems. Information Sciences and Technologies Bulletin of the
ACM Slovakia, Vol. 6, No. 4 (2014) 17-23

tally verify the method on 32 existing applications, to
develop 9 DSLs and to compare two systems using on-
tologies.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—
Domain engineering ; D.3.m [Programming Languages]:
Miscellaneous; H.5.2 [Information Interfaces and Pre-
sentation (e.g., HCI)]: User Interfaces—Evaluation/
methodology, Graphical user interfaces (GUI), Natural lan-
guage, Theory and methods; D.2.11 [Software Engineer-
ing]: Software architectures—Domain-specific architec-
tures, Languages

Keywords
domain analysis, domain-specific languages, graphical user
interfaces, component-based software systems, reverse en-
gineering, ontologies

1. Introduction
When developing a new software system (or a new ver-
sion of a system) for a particular domain (e.g. banking),
the first step of the developer is to speak with the do-
main experts (bank employees), study documents to gain
knowledge about the domain and find and analyse exist-
ing banking systems (or the old version of the banking
system). Then a form of a formal domain model is cre-
ated, describing the knowledge from the banking domain,
which is used to develop the new system.

This process is called domain analysis (DA). The person
who performs DA is called domain analyst. The task is
usually manual and often tedious and time consuming.
This work aims to reduce the time and effort of the do-
main analyst by supporting the creation of a formalized
domain model in an automated manner.

Why extract domain information from GUIs and not for
example from domain experts or domain documents? GUIs
are made for domain users, therefore we can assume, they
will contain correct domain terms and relations. Other-
wise, they would be less usable. Moreover, unlike the
knowledge of a domain expert or information stored in
domain documents, GUIs are in a formalized form. Tak-
ing this facts into account, we can say that GUIs are the
best sources of formalized domain knowledge.

The idea goes even further and we propose a method for
creating new domain-specific languages (DSLs) based on



18 Bač́ıková, M.: Domain Analysis of Graphical User Interfaces of Software Systems

the previously extracted domain models. Thus, we con-
tribute to the DSL development also.

DSLs are small programming languages that provide suit-
able notations and abstractions for achieving expressive
power specialized, and usually restricted, to a domain of
problems [1, 2]. By having a DSL, the developer of a new
system can benefit from the architecture with a separated
domain model. Besides this advantage, DSLs further pro-
vide benefits such as easier programming and easier un-
derstandability for end-users. Although the new system
will use different technology or have a different appear-
ance, because of reusing the DSL from the old system,
the terms in the UI will be the same and therefore it will
be more user-friendly.

Because the development of tools for supporting the DSL
design is often inevitable, the development of a DSL can
be of a high cost. Zawoad et al. provide a comprehensible
example of creating their own DSL for secure logging [3].
From their work it is evident, that a deep understand-
ing of the DSL creation process is needed to create new
DSLs and their supporting tools. Zawoad et al. perform
5 standard phases of creating DSLs: (1) domain analy-
sis, (2) definition of the abstract syntax, (3) definition of
the concrete syntax, (4) definition of the translational se-
mantics, (5) implementation. While the last four phases
are well supported and automated by many researchers
[4], the DA phase is usually performed manually, as it is
also in the case of Zawoad et al. We aim to support the
DA phase by designing a method for automatized cre-
ation of a DSL from existing sources. By providing an
automatic generation of a language processor for the gen-
erated DSL, we also support the next four phases of the
DSL development. Although the development phase is
pretty well supported, we integrate existing solutions into
our approach and thus provide a comprehensive solution,
which supports all phases at once.

We have designed and developed the aforementioned meth-
od for domain language extraction. The method is a com-
bination of two steps. In the first step, our DEAL method
analyses UIs and creates a platform-independent domain
model. The second step is a translation of the domain
model to a language specification. We have implemented
a prototype of the method – the DEAL tool. As a lan-
guage specification we use grammar description language
supported by annotation-based model-driven parser gen-
erator YAJCo [5]. YAJCo is able to generate a language
model specification using annotated Java classes. In our
case, however, we create the language specification by
traversing the domain model and creating language con-
cepts, abstract and concrete syntax in our algorithm.
Based on the language specification, YAJCo generates a
parser, that can be used as a text-based UI of the applica-
tion (this could be interesting for testing the non-UI part
of the application). Both tools, DEAL and YAJCo were
developed at our university and in the following sections
we will shortly describe their principles. The concept of
the method is displayed in Fig. 1.

2. The DEAL Method
In this section we will describe our DEAL method for
domain analysis and DSL development. We will also de-
scribe its implementation, the DEAL tool. To explain the
process, how the DSLs are created from domain models
extracted by the DEAL method we will present the pro-

Figure 1: The concept of the DEAL method for
domain language extraction

cess on a small example of a Person form and we will also
shortly describe the YAJCo tool that is used to generate
language model classes and parser.

Our method for domain analysis is called DEAL (Domain
Extraction ALgorithm). The input of the DEAL method
is an existing UI made of components and the output is
a platform-independent domain model.

The target UIs to be analysed have to fulfil the following
conditions: (i) the UI has to be made of components,
(ii) the UI programming platform has to enable some form
of introspection. If the conditions (i) and (ii) are valid,
then we can perceive graphical components as domain-
specific units that represent the terms of the UI language.
The scenes (i.e. windows, dialogs, web pages, etc.) of a UI
define the domain or sub-domain and terms represented
by all the components located in a particular scene belong
to the domain or sub-domain defined by the scene. The
components represent domain-specific units of the domain
defined by the scene.

The DEAL method uses two kinds of metamodels: appli-
cation UI metamodel and domain metamodel. The ap-
plication UI metamodel is a model of an application’s UI
and it contains scenes represented as hierarchies of con-
tainers and components and their domain identifiers. It
defines the input of the DEAL method, i.e. a UI. The
domain metamodel defines serves for specifying domain
terms, their hierarchy, their properties, constraints and
relations between the terms. The domain metamodel de-
fines the output of the DEAL method.

Figure 2: Phases of the DEAL method



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 6, No. 4 (2014) 17-23 19

The DEAL method has five phases as displayed in Fig. 2:

1. Loading and processing
2. Extraction
3. Simplification
4. Derivation
5. Utilization

In the loading and processing phase the target application
is loaded into memory and all its scenes and components
are traversed and processed. The loading and process-
ing phase is application-specific and the UI programming
platform of the target application has to provide means of
introspection for this phase to be successful. Application-
specific means that a loading and processing algorithm
has to be created for every new programming language
and the programming platform of the target application’s
UI. The output of the loading and processing phase is an
application UI model.

The extraction phase is component-specific. Component-
specific means that a handler has to be created for each
component type and UI programming platform. The out-
put of the extraction phase is an object representation of
the domain model, which contains terms, their explicit
properties and constraints.

Simplification means filtering information unrelated to
the domain. The domain model created in the extraction
phase contains data unimportant for the domain model,
such as: empty terms (terms without any relevant do-
main information, created mostly from containers), gen-
eral terms unrelated to the domain (such as File, Save,
Import, Exit, etc.). Filtering involves removing multiple
nesting, removing empty terms, shifting single leafs and
filtering general non-domain terms. In this context, an
empty term is a term created from a component of type
container that does not contain any children.

Some empty terms are essential for preserving the hierar-
chy of terms. However if the target application contains
too many containers, it causes excessive deepening of the
domain model hierarchy, which is not desirable. There-
fore such terms have to be removed. The output of the
simplification phase is a simplified domain model.

Derivation is a process where implicit relations are de-
rived. Derivation is defined in component handlers and is
based on the identification of different component types.
The output is a simplified domain model with implicit
relations between terms. DEAL supports three kinds
of relations: and, mutually-exclusive and mutually-not-
exclusive relation.

In the utilization phase the model created in the previ-
ous phase can, for example, be utilized in the following
processes:

• generating a DSL (described in [6]),
• generating an ontology (described and experimen-

tally verified in [7]),
• generating new UI (described and experimentally

verified in [8],
• evaluating domain usability [9], etc.

Each of the 5 phases are to be performed sequentially

in the order they are listed here. Each phase uses the
output of the previous phase. Once the domain model is
extracted, it can be processed independently. Thus the
simplification, derivation and utilisation phases are not
necessarily application-specific: they are the same for any
target application.

2.1 The DEAL Tool
The DEAL tool1 is a software solution for extracting do-
main knowledge from existing UIs and it proves the pos-
sibility of using the DEAL method on Java and Windows
applications. The prototype is written in Java language
and it uses Java reflection, DOM and AspectJ to be able
to extract domain information from target applications.
The main window of the DEAL tool is displayed in Fig-
ure 3. It allows to review domain models extracted from
running application. The functionality is interconnected
with the target application: when a user clicks on a term
in the extracted domain model, then the corresponding
component is highlighted in the target application, too.
Some of the extracted concepts can be excluded from the
model using a “Hide” function.

Figure 3: The DEAL tool in the back and a Person
form in the front.

The DEAL tool proves that it is possible to:

• traverse a UI of an existing application, given that
the application is made of components and enables
introspection,
• extract domain information from the UI in a for-

malized form, and to generate a DSL based on the
extracted domain model.

The resulting domain model is in a form of an internal
object model.

2.2 DSL as Output of the DEAL Method
For better understanding, we will present the result of
extraction on a small DSL extracted from a Person form.
The form can be seen in Fig. 4.

Domain model of the form was extracted using the DEAL
tool. This model was transformed into a language model
used by YAJCo tool described in section 2.3.

1DEAL project can be found at: https://www.assembla
.com/spaces/DEALtool



20 Bač́ıková, M.: Domain Analysis of Graphical User Interfaces of Software Systems

Figure 4: The Person form

The concrete syntax of the Person form language can
be described using a grammar in EBNF. The elements
〈STRING〉 and 〈NUMBER〉 represent a terminal string
or numeric values. The concrete syntax of the DSL gen-
erated from the Person form is as follows (terminals are
noted in quotation marks):

Person→ ”Person”Name Surname Age

Gender FavouriteColor

Name→ ”Name” 〈STRING〉
Surname→ ”Surname” 〈STRING〉

Age→ ”Age” 〈NUMBER〉
Gender → ”Gender” (”man” | ”woman”)

FavouriteColor → ”Favourite colors”

(”red”? ”blue”? ”green”? ”yellow”?)

In this domain model to DSL specification transformation,
each term of the domain model is transformed into one
concept in the language model. That means, for each
term there is one rule in the EBNF. The domain model
is represented as a hierarchy of terms. This hierarchy is
directly mapped into the hierarchy of language concepts.

Moreover, if a term in the domain model has a not-mutually-
exclusive relation, then this term is transformed into a
rule of 0-1 choices (similar to the FavouriteColor rule)
and in Java class it is represented as a list of items. On
the other hand, if the term has a mutually-exclusive re-
lation, then it is transformed into a rule of alternatives
(similar to the Gender rule) and in Java class it is repre-
sented as enumeration.

We also map data types into the language model. Note
that since the Age field in the graphical form is a nu-
meric spinner in the UI, the data type of the Age property
was derived as 〈NUMBER〉 type. And since both Name
and Surname came from textfield components, the data
type of the Name and Surname properties was derived
as 〈STRING〉 . For more information about the domain
model to DSL specification transformation, see our paper
[6].

2.3 YAJCo Parser Generator
YAJCo2 is a parser generator that accepts language spec-
ification in a form of Java classes representing language
concepts. Relations between the concepts (and therefore

2YAJCo project can be found at: https://code.google
.com/p/yajco/

grammar structure) are inferred from the relations be-
tween classes such as inheritance, composition and aggre-
gation. Concrete syntax of the language and some ad-
ditional information is specified using Java annotations.
Based on such specification YAJCo can generate language
grammar and parser. YAJCo also generates the parser
using JavaCC or Beaver that can instantiate the model
based on a DSL sentence. More about YAJCo can be
found in [5].

YAJCo can also be used the other way round and generate
object oriented model in a form of Java classes from the
internal language model. This mode of operation was used
to transform domain model extracted by DEAL to both
language grammar and classes representing the language
model as displayed in Fig. 1. This way the extracted
model can be directly used within the new version of the
application.

In our example of the Person form language, several classes
were generated as shown by class diagram in Figure 5. For
each rule in the EBNF grammar there is one class and for
each data type in the rule (number, string, date, etc.) in
the rule there is one property in the class, e.g. a class
Person has a name, surname and age. Each of them rep-
resents object of classes Name, Surname and Age where
the first two have inner values of type String and Age
has an inner value of type int. Person also has a List
of FavouriteColor instances and a reference to a Gender
enum.

Person

Name
name: String

Surname
surname: String

Age
age: int

<<enumeration>>

Gender
man
woman

<<enumeration>>

Favourite_color
red
blue
green
yellow

1 1

1

1 *

Figure 5: Class diagram of the Person language
model.

2.4 Utilization of the DEAL method: Domain
Usability

Since the domain model generated by the DEAL method
is platform-independent, it can be used also in further
processes other than DSL development. Ontologies are
one of the possible output. Ontologies are formal repre-
sentations of knowledge as hierarchies of concepts within
a domain, using a shared vocabulary to denote the types,
properties and interrelationships of those concepts. On-
tologies are considered pillars of the Semantic web, where
they are used to define semantics of web pages. One of
the standard format for ontology notation is OWL.

We developed a method for creating an ontology from
the domain model extracted by the DEAL method and
we described it in [7]. The output ontology is in the stan-
dard OWL format and describes the knowledge extracted
from the existing application. Thus, we also support a
formalization of existing GUIs into ontologies.



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 6, No. 4 (2014) 17-23 21

The goal of ontology extraction is not only to aid Semantic
web. Because of the OWL standard, we can benefit from
ontological methodologies and tools. For example, we can
compare two ontologies or query an ontology for facts we
need to know. Ontology comparation or querying can be
used to evaluate usability of the target user interface, by
comparing it to another user interface (its ontology) or to
an ontological dictionary such as WordNet for correctness.
We call this aspect of the system domain usability. To
define domain usability we have to explain the general
usability first.

The common perception of usability is usually in the terms
of user experience, satisfaction, application quality and
effectiveness or ergonomics. Often it is seen from the er-
gonomic point of view and the domain aspect is neglected
or omitted, even if it is included‘ in the general definition
by Nielsen [10], which still serves as a fundamental guide
to create usable software systems, new usability guidelines
and usability evaluation and testing systems.

Each software is developed for a concrete domain, there-
fore its UI should contain terms, relations and describe
processes from its specific domain for the users to be able
to work with it. If the user does not understand the terms
in the system’s UI, then the whole application is less us-
able. Based on our experience and research and pursuing
the existing current work in the area of usability, we de-
fined understandability as the property of a system, that
affects usability and relates to the following factors:

• Domain content: the UI terms, relations and pro-
cesses should match the ones from the domain, which
the UI is designed for.
• Adequate level of specificity: the UI made for a

specific domain should not contain terms too gen-
eral, even if they belong to a parent domain. On the
other hand, the terms should not bee too specific,
if the system is used by people from a more general
domain.
• Consistency: words used throughout the whole UI

should not differ, if they describe the same function-
ality, the dictionary shoulxd be consistent.
• Language barriers: there should be no foreign words,

the translation should be complete. The language
of the UI should be the language of the user.
• Errors: a UI should not contain stylistic and gram-

matical errors.

The domain usability is defined as the aspect of usability,
which is affected by the factor of UI understandability.
However, it is not true that understandability = domain
usability. Understandability can affect other attributes
besides domain usability, e.g. accessibility. The overall
usability is defined as a connection of two basic aspects:
ergonomic usability and domain usability. These two as-
pects can be combined together when evaluating usability.

Using our approach, and using the proposed ontology for-
malization, it is possible to automatically evaluate domain
usability as described in the introduction of this section.
The feasibility analysis of automated evaluation of domain
usability is described in [9].

3. Experimental verification
We performed three experiments. The goal of the first ex-
periment was to verify the DEAL method on existing Java
applications. More specifically it verifies the coverage of
the DEAL default handlers for components. The second
experiment is a verification of the DSL extraction mod-
ule. The third experiment verifies the ontology extraction
module and moreover, it uses the ontologies generated by
the module to compare two existing applications. We will
describe each experiment in the next sections3.

Experiment 1: Coverage of the DEAL Default Handlers

We verified the DEAL prototype against 32 open-source
Java applications downloaded from sourceforge. The num-
ber of 799 components were counted in all 32 applications
and 761 of them were successfully extracted. Considering
these numbers, the DEAL prototype has a 95% coverage.

For poorly designed applications, such as ArcaneAvalon,
where the content was drawn directly in the paint() meth-
od of the application frame, the content was not extracted
at all.

On the other hand, there were examples of graphical ap-
plications such as FreeMind and Freeplane with very good
designs and thus not only standard but also all the app-
lication-specific components have been extracted properly
from them.

Experiment 2: DSLs of Domain-specific Applications

Using the DEAL method we were able to infer grammars
and parsers for 9 domain-specific languages such as: the
language of locations and time zones, the language of fur-
niture categories and furniture, the language of egyptian
hieroglyphic symbols, the language of star observations
and the language of bibliographical references.

The applications, which the DSLs were extracted from,
are: PersonForm (a simple testing application), TimeS-
lotTracker, DaylightChart, JSesh, SweetHome3D, VStar,
JabRef (all downloaded from sourceforge.net).

All DSLs in our experiment were generated correctly, hence
achieving our goal4.

Experiment 3: Comparison of two Applications

The goal of this experiment was to answer the question
whether it is possible to compare two existing GUIs based
on their domain model and to what extent. For ontology
extraction, we used the DEAL module for generating on-
tologies and for automatic comparison we used the Pro-
tégé ontology tool.

Two ontologies were generated from two applications:
Freeplane and FreeMind, both downloaded from source-
forge. The result of the comparison of ontologies created
from the applications are the following: 1. entities cre-

3A more detailed description and the results of the
experiments can be found online in the DEAL wiki page:
https://www.assembla.com/spaces/DEALtool/wiki/Ex–
perimental verification
4The DSLs can also be found online in a Dropbox folder
at http://goo.gl/PxaFy7



22 Bač́ıková, M.: Domain Analysis of Graphical User Interfaces of Software Systems

ated: 678, 2. entities deleted: 166, 3. entities modified:
345. The results are not 100% accurate, because the com-
ponents with different names, but same functionality in
both applications, were counted as created/deleted enti-
ties, not as modified. However some changes can be iden-
tified with certainty, e.g. the menu item position changes
can be identified in the Superclass parameter in Protégé
or the change of the menu item class.

When finding new features, combination of a visual (man-
ual) comparison and automatic ontology comparison can
be better than visual-only. Combination of the visual and
ontology comparison with highlighting would highly en-
hance the illustration of the comparison.

4. Related Work
In this section, we will select the most important works,
related to our approach.

As proposed by Čeh et al. [11], it is possible to use on-
tologies as sources of DSL terminology. They have im-
plemented the Ontology2DSL framework to demonstrate
the ontology to DSL transformation. The condition for
using their approach is the existence of an ontology de-
signed for the given specific domain. Which is actually an
equally difficult problem compared to finding an existing
DSL for the given specific domain - the amount of exist-
ing software systems is certainly larger than the amount of
existing ontologies, therefore we claim that our approach
for creating DSLs is more advantageous.

Several approaches exist that deal with automatized DA
in the area of feature modeling. All mentioned approaches
deal with automatized extraction of feature models from
various sources and with subsequent processing of the ex-
tracted information. A feature model is a specific kind
of domain model that uses features to describe a domain
application. Czarneczki et al. [13] propose mining tech-
niques that extracts feature models from a set of multiple
product configurations, however the assumption is that
the products are already formally described as sets of fea-
tures or configurations. However it would be possible to
combine the DEAL method with their technique. Davril
et al. [14] assume that an organization has no existing
product descriptions and must rely on publicly available
data from websites, which provide feature lists of prod-
ucts. Weston et al. [15] and Chen et al. [12] propose a
method of extracting feature models from informal spec-
ifications. The resulting feature model is constrained to
the set of features described in the specifications for the
existing set of products.

An approach very similar to ours is the diploma thesis
of Jǐŕı Sotona [16]. Sotona created a tool called HTML
Extract which is able to automatically extract textual in-
formation from web GUIs. Similar approach, targeted to
mobile device readability, was presented by Buyukkok-
ten et al. [17] who introduced methods for summarizing
parts of Web pages in handheld devices. Buyukkokten et
al. aimed at enhancing web readability and orientation
for mobile web readers. Šváb et al. [18] perform extrac-
tion of specific statistical information using the Hidden
Markov model technique and the output of the extrac-
tion is data in an RDF format. They extract structured
semantic information, however their work benefits from
targeting the extraction process on specific data such as
product catalogues while our approach is aimed at GUIs

in general. Bronzi et al. in [19] present their approach
of harvesting data exposed by a set of structured and
partially overlapping data-intensive web sources. Bronzi
et al. use multiple web sites to extract domain-specific
information based on the overlapping data. The result
is a table of domain data. The approach is quite simi-
lar to our approach, however we also create DSLs from
the GUIs, i.e. our motivation is to develop new soft-
ware systems using the DSL. Mazal [20] tries to create
an XML with data extracted from existing HTML page.
The XML contains textual data from the page, page title
and date. Mazal however does not extract any data prop-
erties or derives relations between the textual items. Each
of the listed approaches deals with data extraction from
web pages in the first place, but none of them deals with
creating a domain model from the extracted data. Unlike
our approach, none of the listed approaches had defined
a methodology for extracting domain models along with
properties and relations from existing GUIs.

5. Conclusions
The work describes a new unique method and approach
for DSL development. Its main contributions include:

• Proposal of an original method of domain analysis
of graphical user interfaces.

• Proposal of a unique approach to developing DSLs.

• Proposal of a new definition of domain usability.

• A feasibility analysis of automatic evaluation of do-
main usability.

• Experimental verification of the proposed method.

The designed approach for domain analysis of GUIs and
creating DSLs can be further developed in several fields,
including:

• Evaluation of domain usability. We are convinced
that the extracted domain models can be used not
only for visual evaluation of domain usability by a
developer or domain expert, but also automatically
by comparing the extracted domain model with an
existing ontology or ontological dictionary, that con-
tain pre-defined relations between the terms. This
field represents our current and future research.

• Analysis of UI event sequences. In our definition
of domain usability we also touch the sequences of
events in UIs and we claim that sequences of events
should correspond to the real-world processes. Cur-
rent approaches for analysing UI event sequences
focus on analysing procedural errors and bugs, how-
ever our view on the event sequences is more as do-
main processes.

• Generative processes, e.g. a generation of user guides
as an example with using the above mentioned UI
event sequences recorded on a UI. A tool for record-
ing such event sequences could be used to generate
a draft of a user guide along with the screenshots.

• Combination of the DEAL approach with other ap-
proaches for domain analysis, such as clustering or
for example, the Davril’s approach [14] for extract-
ing domain information from product descriptions
from public websites of existing software applica-
tions.



Information Sciences and Technologies Bulletin of the ACM Slovakia, Vol. 6, No. 4 (2014) 17-23 23

5.1 Acknowledgments
This work was supported by project VEGA 1/0341/13
“Principles and methods of automated abstraction of com-
puter languages and software development based on the
semantic enrichment caused by communication”.

References
[1] M. Mernik, J. Heering, and A. M. Sloane, “When and how to

develop domain-specific languages,” ACM Comput. Surv., vol. 37,
no. 4, pp. 316–344, Dec. 2005.

[2] M. Fowler, Domain-Specific Languages, 1st ed.
Addison-Wesley Professional, Oct. 2010.

[3] S. Zawoad, M. Mernik, and R. Hasan, “Fal: A forensics aware
language for secure logging,” in Computer Science and
Information Systems (FedCSIS), 2013 Federated Conference on,
Sept 2013, pp. 1579–1586.

[4] T. Kosar, P. E. M. López, P. A. Barrientos, and M. Mernik, “A
preliminary study on various implementation approaches of
domain-specific language,” Inf. Softw. Technol., vol. 50, no. 5, pp.
390–405, Apr. 2008.

[5] J. Porubän, F. M., M. Sabo, and M. Běhalek, “Annotation based
parser generator,” Computer Science and Information Systems :
Special Issue on Advances in Languages, Related Technologies
and Applications, 2010.

[6] M. Bačíková, J. Porubän, and D. Lakatoš, “Defining domain
language of graphical user interfaces,” in SLATE, 2013, pp.
187–202.

[7] M. Bačíková, Š. Nitkulinec, “Formalization of graphical user
interfaces using ontologies,” in POSTER 2014 : 18th
International Student Conference on Electrical Engineering,
vol. 15. Czech Technical University in Prague, May 2014, pp.
1–5. [Online]. Available:
http://hornad.fei.tuke.sk/ bacikova/publications/2014–
04_poster14_bacikova–nitkulinec.pdf

[8] M. Bačíková and J. Porubän, “Ui creation patterns (using itasks
for dsl -> gui transformation,” in Proceedings of the Twelfth
International Conference on Informatics, INFORMATICS’2013,
Spišská Nová Ves, Slovakia, 2013, pp. 145–150.

[9] ——, “Ergonomic vs. domain usability of user interfaces,” in
Human System Interaction (HSI), 2013 The 6th International
Conference on, June 2013, pp. 159–166.

[10] J. Nielsen, Usability Engineering. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1993.

[11] I. Čeh, M. Crepinsek, T. Kosar, and M. Mernik, “Ontology driven
development of domain-specific languages,” Computer Science
and Information Systems, no. 2, pp. 317–342, 2011.

[12] K. Chen, W. Zhang, H. Zhao, H. Mei, “An Approach to
Constructing Feature Models Based on Requirements Clustering,”
RE ’05: Proceedings of the 13th IEEE International Conference
on Requirements Engineering, pp. 31–40, IEEE Computer
Society, Washington, DC, USA, 2005.

[13] K. Czarnecki, S. She, and A. Wasowski, “Sample spaces and
feature models: There and back again,” Software Product Line
Conference, International, vol. 0, pp. 22–31, 2008.

[14] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang,
and P. Heymans, “Feature model extraction from large collections
of informal product descriptions,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2013. New York, NY, USA: ACM, 2013, pp.
290–300.

[15] N. Weston, R. Chitchyan, and A. Rashid, “A framework for
constructing semantically composable feature models from
natural language requirements,” in Proceedings of the 13th
International Software Product Line Conference, ser. SPLC ’09,
Pittsburgh, PA, USA, 2009, pp. 211–220.

[16] J. SOTONA, “Hypertext data preprocessing for e-learning,”
master’s thesis, Masaryk’s university, Faculty of informatics, 2007
[cit. 2014-02-17]. [Online]. Available:
http://is.muni.cz/th/60464/fi_m/

[17] O. Buyukkokten, H. Garcia-Molina, and A. Paepcke, “Seeing the
whole in parts: Text summarization for web browsing on

handheld devices,” in Proceedings of the 10th International
Conference on World Wide Web, ser. WWW ’01. New York, NY,
USA: ACM, 2001, pp. 652–662.

[18] O. Svab, M. Labsky, and V. Svatek, “Rdf-based retrieval of
information extracted from web product catalogues,” 2004.

[19] M. Bronzi, V. Crescenzi, P. Merialdo, and P. Papotti, “Extraction
and integration of partially overlapping web sources,” Proc.
VLDB Endow., vol. 6, no. 10, pp. 805–816, Aug. 2013.

[20] J. Mazal, “Extraction of textual data from web pages,” master’s
thesis, Brno University of Technology, 2011 [cit. 2014-02-19].
[Online]. Available:
https://www.vutbr.cz/www_base/zav_prace_soubor
_verejne.php?file_id=40352

Selected Papers by the Author
M. Bačíková, J. Porubän Evaluating Domain Usability with DEAL: a

Case Study. In Journal of Computer Science and Control
Systems: JCSCS Vol. 6, no. 1(2013), pages 5–9. ISSN
1844-6043. 2013.

M. Bačíková, J. Porubän Analyzing stereotypes of creating graphical
user interfaces In Central European Journal of Computer Science.
Vol. 2, no. 3 (2012), pages 300–315. ISSN 1896-1533. 2012.
Springer.

M. Kreutzová, J. Porubän, P. Václavík First Step for GUI Domain
Analysis : Formalization In Journal of Computer Science and
Control Systems. Vol. 4, no. 1 (2011), pages 65-70. ISSN
1844-6043. 2011.

M. Bačíková, J. Porubän Ergonomic vs. Domain Usability of User
Interfaces In HSI 2013 : 6th International Conference on Human
System Interaction : June 6.–8. 2013, Sopot, Poland, pages 1–8.
ISBN 978-1-4673-5636-7. 2013. IEEE. Selected to monograph –
waiting for publisher review.

M. Bačíková, J. Porubän, D. Lakatoš Defining Domain Language of
Graphical User Interfaces In SLATE 2013: Symposium on
Languages, Applications and Technologies : proceedings : June
20-21 2013, Porto, Portugal, pages 187–202. ISBN:
978-3-939897-52-1, ISSN: 2190-6807. 2013.

M. Bačíková, D. Lakatoš, M. Nosál’ Automatized generating of GUIs
for domain-specific languages In SLEDS 2012: Doctoral
Symposium of the 5th International Conference on Software
Language Engineering 2012 : proceedings : Dresden, Germany,
September 25, 2012, Dresden, Germany. - Leipzig : Universty of
Leipzig, 2012, pages 1–9. ISSN 1613-0073 [Online]
http://ceur-ws.org/Vol-935/.

M. Bačíková, J. Porubän, D. Lakatoš Declarative Specification of
References in DSLs In Federated Conference on Computer
Science and Information Systems, FedCSIS 2013. 8-11.9.2013:
Krakow Poland, pages 1527–1534. Los Alamitos, CA, USA :
IEEE Computer Society Press, 2013, acceptance rate 40%.

M. Sabo ... [et al.] Computer Language Notation Specification
through Program Examples In FedCSIS: Proceedings of the
Federated Conference on Computer Science and Information
Systems. September 18-21, 2011, Szczecin, Poland. Los
Alamitos, pages 895–898. ISBN 978-83-60810-22-4. IEEE
Computer Society Press, 2011.

M. Bačíková Formalization of Graphical User Interfaces using
Ontologies In POSTER 2014 : 18th International Student
Conference on Electrical Engineering : May 15, 2014, Prague,
Czech republic. Czech Technical University in Prague, 2014,
pages 1–5.

M. Bačíková DEAL – a method for Domain Analysis of Graphical
User Interfaces In Poster 2013 : 17th International Student
Conference on Electrical Engineering : May 16, 2013, Prague.
Czech Technical University in Prague, 2013, pages 1–5. ISBN
978-80-01-05242-6.

M. Bačíková Domain analysis with reverse-engineering for GUI
feature models In POSTER 2012 : 16th International Student
Conferenece on Electrical Engineering : May 17, 2012, Prague,
Czech republic. Czech Technical University in Prague, 2012,
pages 1–5. ISBN 978-80-01-05043-9.


